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ABSTRACT

We develop a convenient surface theory in E3 in order to apply it to the class of the surfaces

invariant under a one-parameter group of isometries of E3. In this way we derive intrinsic

characterizations along with several results of subclasses of this class of surfaces that satisfy

certain preassigned properties. In the process all results are also effortlessly derived. Among these

subclasses are those with surfaces; of constant mean curvature, of constant Gaussian curvature,

isothermic, with constant difference or ratio of the principal curvatures.
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INTRODUCTION

In this part we develop some general surface theory inE3 to be applied to the surfaces invariant under

a one parameter group of isometries of E3, that is, generalized cylinders, surfaces of revolution

and helicoidal surfaces. This theory develops some very useful results of surface theory in an

easy and straightforward manner, some of which can apply to any surface and not necessarily to

surfaces invariant under a one parameter group of isometries of E3. Furthermore, we reach results

concerning the class of surfaces with constant mean curvature.

When this theory is applied to the class of surfaces invariant under a one parameter group

of isometries of E3 we derive very easily some older known and many new results. Among the

new results we distinguish: (1) Intrinsic characterization of those surfaces in this class with the

difference of the principal curvatures constant. (2) Intrinsic characterization of the isothermic

helicoidal surfaces. (3) New intrinsic characterization of the surfaces in this class with constant

mean curvature. (4) Various interesting ordinary differential equations study worthy in their own

sake.

E-mail: iroussos@piper.hamline.edu
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The study and the solutions of the ordinary differential equations involved can change the

intrinsic results into explicit ones. These differential equations are very hard to crack down. They

are of second order and highly non-linear. Even though they can easily be reduced to first order

differential equations the integrals of these first order differential equations are far from being

elementary. In the case of minimal surfaces the Gauss equation can be easily integrated and yields

all known results in a very nice and straight way. Also, when the mean curvature is a non-zero

constant we can integrate the same equation by making use of elliptic integrals and thus obtain an

intrinsic characterization and some old and new results.

Finally, we examine the flat helicoidal surfaces with non-constant mean curvature (the ones

with constant mean curvature being the right circular cylinders). These are exactly the tangential

developable surfaces of circular helices. Apart from their “usual” parameters we find the principal

and the natural parameters. Next, we examine the helicoidal surfaces with non-zero constant

Gaussian curvature and the surfaces of revolution with constant Gaussian curvature. Last of all,

we examine the helicoidal surfaces and the surfaces of revolution with ratio of principal curvatures

constant. In all of the above cases we try to find all fundamental quantities of the surfaces as

explicitly as the equations allow in a certain coordinate system that we call natural coordinates.

1. SOME GENERAL SURFACE THEORY IN E3

A) We consider a surface M2 in E3 connected, oriented and of sufficient smoothness. We assume

that over M2 there is a well-defined field of orthonormal frames x, j1, j2, j3 such that x ∈ M2,

{j1, j2} is an orthonormal basis of the tangent plane of M2 at x and j3 is the unit normal vector to

M2 at x. On M2 we consider the well known forms ηi = dx · ji , i = 1, 2, 3 which are the dual

forms to the vectors j1, j2, j3 and for k, l = 1, 2, 3 we define ηkl = djk ·jl which are the connection

one-forms on M2. All these forms satisfy the following well-known equations on M2:

η3 = 0 (since j3 is the unit normal vector to M2)

ηkl = −ηlk (so, ηkk = 0), k, l = 1, 2, 3

dx = η1j1 + η2j2

dj1 = η12j2 + η13j3 (1)

dj2 = η21j1 + η23j3

dj3 = η31j1 + η32j2

dηk =
3∑
l=1

ηkl ∧ ηl, k = 1, 2, 3 (first structural equation) (2)

dηkl =
3∑

n=1

ηkn ∧ ηnl, k, l = 1, 2, 3 (second structural equation) (3)

(∧ is the symbol of the wedge product of forms and d is the exterior derivative of forms.)
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Since {η1, η2} is a basis of forms on M2, for the connection form η12 we can write

η12 = pη1 + qη2 (4)

for some smooth functions p, q. Then by (2) we get that

dη1 = pη1 ∧ η2

dη2 = qη1 ∧ η2

(5)

Since η3 = 0 on M2 then dη3 = 0 on M2 and by (2) we have that η13 ∧ η1 + η23 ∧ η2 = 0. So, by

Cartan’s Lemma we can write that

η13 = αη1 + βη2

η23 = βη1 + γ η2

(6)

for some smooth functions α, β, γ .

We also have the following equations:

dη12 = −Kη1 ∧ η2 (Gauss Equation) (GE)

dη13 = η12 ∧ η23= −βdη2 + γ dη1

dη23 = η21 ∧ η13 = αdη2 − βdη1

}
(Codazzi-Mainardi Equations) (CME)

The mean and Gaussian curvatures of M2 are respectively

H = 1

2
(α + γ )

K = αγ − β2

We will use the Hodge operator ∗ which rotates the frames of the tangent and cotangent space of

M2 by
π

2
. So, acting on the one forms we have that

∗η1 = η2, ∗η2 = −η1, ∗2 = −1

B) We will need the following result. Suppose that M2 has orthogonal parameters (s, t) such that

the first fundamental form is given by

I = η2
1 + η2

2 = Eds2 +Gdt2 (E > 0, G > 0)

These parameters become isothermal, that is, we can rewrite I as

I = λ(x, y)(dx2 + dy2), (λ > 0)
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if and only if

∂2

∂s∂t
ln(
E

G
) = 0

(see Eisenhart 1909, Stephanidis 1987).

With η1 = √
Eds , η2 = √

Gdt and η12 the corresponding connection form, then this condition

in terms of forms is easily proven to be equivalent to

d ∗ η12 = 0 (7)

(see Stephanidis 1987).

C) Now, we consider another typical field of frames on M2, x, e1, e2, e3 = j3 with ω1, ω2 the

coframe corresponding to e1, e2 and ωkl , k, l = 1, 2, 3 the corresponding connection forms. We

take {e1, e2} to have the same orientation with {j1, j2}. Then we can find a branch of the angle ψ

from e1 to j1, so that we can write

j1 = cosψe1 + sinψe2

j2 = − sinψe1 + cosψe2

(8)

η1 = cosψω1 + sinψω2

η2 = − sinψω1 + cosψω2

(9)

η13 = αη1 + βη2 = cosψω13 + sinψω23

η23 = βη1 + γ η2 = − sinψω13 + cosψω23

(10)

The forms η12 and ω12 are related by

η12 = dψ + ω12 (11)

(The relations (10) and (11) follow from the previous equations by straightforward calculation.)

Therefore, d ∗ η12 = d ∗ dψ + d ∗ ω12. We know that d ∗ dψ = "2ψ · dA with "2 the Laplace-

Beltrami operator and dA the area element of M2 η1 ∧ η2 = ω1 ∧ ω2. Hence by (7) we obtain the

following useful result:

If {η1, η2} is derived from isothermal coordinates, then {ω1, ω2} is also derived from isothermal

coordinates if and only if "2ψ = 0. Therefore, the angle ψ between any two isothermal systems

is harmonic.

D) Next, we are assuming thatM2 has no umbilic points (⇐⇒ H 2 > K) and e1, e2 are the principal

unit vectors corresponding to principal curvatures a, c. Since M2 is connected we may assume
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a > c. We have

ω13 = aω1, ω23 = cω2 (12)

H = a + c

2
(= α + γ

2
) (mean curvature) (13)

K = a · c (= αγ − β2) (Gaussian curvature) (14)

We set

J = a − c

2
=

√
H 2 −K > 0 ⇐⇒ K = H 2 − J 2 (15)

From , (9), (10), (12), (13) and (15) we can compute that

α = J cos 2ψ +H

β = −J sin 2ψ

γ = −J cos 2ψ +H


 (16)

We write the differentials

dψ = ψ1η1 + ψ2η2

dH = H1η1 +H2η2

dJ = J1η1 + J2η2

(thus defining ψ1, ψ2, H1, H2, J1, J2).

From (3), (4), (5), (6) and (16) we can solve for ψ1, ψ2 and find

ψ1 = 1

2

(
−J2

J
− H2

J
cos 2ψ − H1

J
sin 2ψ + 2p

)

ψ2 = 1

2

(
J1

J
+ H2

J
sin 2ψ − H1

J
cos 2ψ + 2q

)

So, the differential of ψ is given by

dψ = 1

2

(
J1

J
η2 − J2

J
η1

)
− 1

2
sin 2ψ

(
H1

J
η1 − H2

J
η2

)
− 1

2
cos 2ψ

(
H2

J
η1 + H1

J
η2

)
+ (pη1 + qη2)

and hence

d(2ψ) = − sin 2ψ

(
H1

J
η1 − H2

J
η2

)
− cos 2ψ

(
H2

J
η1 + H1

J
η2

)
+ ∗d ln J + 2η12 (17)

This equation (17) along with dH = H1η1 + H2η2 consist of an equivalent form of the Codazzi-

Mainardi Equations when J 
= 0.

E) From (17) we can easily conclude two known facts about surfaces with constant mean curvature.

From (17) we get that H is constant if and only if d(2ψ) = ∗dlnJ + 2η12.
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Taking its exterior derivative and using the Gauss Equation we get

0 = d ∗ d ln J + d2η12 = ("2 ln J − 2K)η1 ∧ η2

So, all surfaces with constant mean curvature and without umbilic points satisfy the following

partial differential equation:

�2 ln J = �2 ln
√

H 2 − K = 2K, or �2 ln(H 2 − K) = 4K

(This equation was first observed by G. Ricci. Also see Tribuzy 1980). In addition, if the surface

is minimal without umbilic points then "2 ln(−K) = 4K .)

Furthermore, if H is constant and j1, j2 are the principal vectors e1, e2, then ψ = 0 (mod π )

and (11) with (17) give

ω12 = η12 = −1

2
∗ d ln J ⇐⇒ ∗ω12 = ∗η12 = 1

2
d ln J

(This equation is of course valid for any ψ constant when H is constant.) Taking its exterior

derivative we find d ∗ ω12 = d ∗ η12 = 0.

Using (7) we conclude that

All surfaces with constant mean curvature and without umbilic points have principal coordi-

nates that can become isothermal. (By definition, the surfaces for which their principal coordinates

can become isothermal are called to be isothermic surfaces. (See, e.g., Eisenhart 1909).

Moreover, by putting ψ = 0 in (17) we straightforwardly obtain the following general char-

acterization of isothermic surfaces in E3: A surface in E3 without umbilic points is isothermic if

and only if

d

(
H1

J
ω1 − H2

J
ω2

)
= 0

where here H1 and H2 are determined by the relation dH = H1ω1 +H2ω2. With (u, v) principal

coordinates, this relation is equivalent to the following second order hyperbolic homogeneous

partial differential equation for H

Huv − (ln
√
J )vHu − (ln

√
J )uHv = 0

Also, if ω12 = ρω1 + σω2 we obtain that the geodesic curvatures of the principal curves when

J 
= 0 are

ρ = 1

2

a2

J
= a2

a − c
and σ = 1

2

c1

J
= c1

a − c

Therefore, if one of the principal curvatures is constant then the corresponding principal curve is

a geodesic. If both principal curvatures are constants then ρ = σ = 0 and so ω12 = 0. Therefore,

K = a · c = 0 and hence a = 0 or c = 0. (If a = c = 0 then J = 0 and the surface is a piece of
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the plane, if a 
= 0 constant and c = 0 then J = a 
= 0 and the surface is a piece of a right circular

cylinder of radius 1/|a| and if a = c 
= 0 constant then J = 0 and the surface is a pience of a

sphere of radius 1/|a|.) Similar manipulations of the previous formulae yield various well-known

results in surface theory (e.g., Liouville’s formula, p = ψ1 + cosψρ + sinψσ , see Stephanidis

1987, applications to Bonnet surfaces etc.).

Remark and Note. Except for the planes and the spheres all surfaces with constant mean

curvature have isolated umbilic points. So, the above two results hold true over an open dense

subset of the surface whose complement consists of isolated umbilic points only. The isolatedness

of the umbilic points whenH is constant, is a well-known fact that follows from (the analyticity of

such a surface and) the holomorphicity of the Hopf quadratic differential. (See Spivak 1979, Vol.

V, Ch. 10 and Hopf 1956, pp. 136-139.)

2. APPLICATION TO SURFACES INVARIANT UNDER A ONE-PARAMETER GROUP OF ISOMETRIES

A) A surfaceM2 invariant under a one-parameter group of isometries of E3, is either a generalized

cylinder or a surface of revolution or a helicoidal surface. The first fundamental form for these

surfaces can be written as

I = E(s)(ds2 + dt2), E(s) > 0

where t is parameter along the orbits of the group of the isometries (straight lines, circles, helices

respectively) and s is parameter along the curves perpendicular to the orbits which are geodesics

(see Baikoussis & Koufogiorgos 1997, 1998, Do Carmo & Dajczer 1982, Hitt & Roussos 1991,

Eisenhart 1909, Soyuçok 1995). So, (s, t) are isothermal geodesic coordinates and we call them

natural coordinates. We now let

e(s) = √
E(s)

j1 =
∂

∂s

e(s)
, j2 =

∂

∂t

e(s)

η1 = e(s)ds , η2 = e(s)dt

Hence,

η12 = e′(s)
e(s)

dt = [ln e(s)]′dt = e′(s)
E(s)

η2 (18)

Also, we know that H = H(s), J = J (s), ψ = ψ(s). We then write

H ′ = dH

ds
, J ′ = dJ

ds
, ψ ′ = dψ

ds

Whereas the generalized cylinders and the surfaces of revolution may contain umbilic points the

helicoidal surfaces contain no umbilic points (see Baikoussis & Koufogiorgos 1997 1998, Hitt &
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Roussos 1991, Roussos 1988ab). But, where J > 0 from (17) and (18) we have that

d(2ψ) = − sin 2ψ
H ′

J
ds − cos 2ψ

H ′

J
dt + ∗(ln J )′ds + 2(ln e(s))′dt

So,

2ψ ′ds = − sin 2ψ
H ′

J
ds + [− cos 2ψ

H ′

J
+ (ln J )′ + (lnE)′]dt

Therefore we have

2ψ ′ = − sin 2ψ
H ′

J

[ln(JE)]′ = cos 2ψ
H ′

J

(19)

B) For generalized cylinders and surfaces of revolution ψ = 0, mod
π

2
. The first equation of

(19) is then satisfied identically. The second equation of (19) gives

[ln(JE)]′ = ±H
′

J
(20)

This equation is satisfied by all generalized cylinders and surfaces of revolution without umbilic

points and it implies that E is a global function. Moreover, if in this situation H is constant—

Delaunay Surfaces—we observe that

JE = B, B > 0 constant (21)

The Delaunay surfaces contain no umbilic points, for otherwise the umbilic points could not be

isolated. Then J > 0 non-constant and the Gauss Equation with (15) give

1

−2E
[(lnE)ss + (lnE)tt ] = K = H 2 − J 2 (22)

Here (lnE)tt = 0 and by (21) and (22) we get

J (ln J )′′ = 2B(H 2 − J 2) (23)

C) By means of differential equations we can intrinsically determine the generalized cylinders and

the surfaces of revolution for which J = A > 0 constant. By (20) we have

(lnE)′ = ±H ′

A

So,

E = Be

±H
A , B > 0 constant
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The Gauss equation (22) becomes

H ′′ = ±2ABe
∓H
A (H 2 − A2) (24)

From this differential equation we find H and then we find E. It is of course trivially satisfied

for H = ±A (= ±J ) constant, in which case we have the right circular cylinders. The second

fundamental forms of these surfaces are given by

II = Lds2 + 2Mdsdt +Ndt2 , where

L = E(H ± J )

M = 0

N = E(H ∓ J )

Remark. If J ≡ 0 for a surface then the surface is totally umbilical (the principal curvatures

are equal to one another). The totally umbilical surfaces are known to be pieces of planes and/or

spheres. Also, if J is a negative constant then a change of the orientation of a connected surface

changes J to be a positive constant.

D) Now assume ψ 
= 0, mod
π

2
, that is, the surface is a helicoidal one. Equations (19) become

H ′

J
= −2ψ ′

sin 2ψ
= (ln | cotψ |)′

[ln(EJ | sin 2ψ |)]′ = 0


 (25)

Let us assume without loss of generality that 0 < ψ <
π

2
. Then

H ′

J
= [ln(cotψ)]′ = −2ψ ′

sin 2ψ
, 0 < ψ <

π

2

E = C

J sin 2ψ
, C > 0 constant


 (26)

(In a bit more general setting we may simply assume JC > 0.) We observe the following geometric

characterization: “A helicoidal surface has constant mean curvature if and only if the angle between

the principal curves and the helices is constant.” (See Roussos 1988 ab)

The helicoidal surfaces with constant mean curvature have been completely determined in

explicit form in Do Carmo & Dajczer 1982. Some additional properties of them are in Hitt &

Roussos 1991. Here, by means of (26) we give an alternative intrinsic characterization, as follows:

When H and ψ are constant with 0 < ψ <
π

2
the Gauss equation given by (22) transforms

into an equation in J as

J (ln J )′′ = 2C

sin 2ψ
(H 2 − J 2) (27)
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The solution of this equation determines J and then E by (26). For the second fundamental form

we have

II = Lds2 + 2Mdsdt +Ndt2, where

L = EH + EJ cos 2ψ = EH + C cot 2ψ

M = −EJ sin 2ψ = −C
N = EH − EJ cos 2ψ = EH − C cot 2ψ

We observe that the constantC is the pitch of the helicoidal motion, h in Baikoussis & Koufogiorgos

1997, Do Carmo & Dajczer 1982, Soyuçok 1995, etc.

Changing ψ by a constant, for two constant values ψ1 and ψ2 of ψ we consider C1 and C2

constants satisfying

C1

sin 2ψ1
= C2

sin 2ψ2
(28)

We then obtain two helicoidal surfaces with the same E, J and H (= constant). Therefore, they

are non-trivially isometric (since ψ1 
= ψ2) with the same constant mean curvature. For ψ2 = 0 or
π

2
relation (28) forces C2 = 0 and then the corresponding surface is a surface of revolution with

the same constant mean curvature H , i.e., it is a Delaunay surface. This describes the periodic

deformation of a helicoidal surface with constant mean curvature through helicoidal surfaces of the

same constant mean curvature. Moreover, all possible helicoidal surfaces with given H constant

are obtained in this way via this periodic deformation of the Delaunay surfaces. See Do Carmo

& Dajczer 1982, Hitt & Roussos 1991, and for their limit surfaces with respect to the parameters

involved see Sasai 1996.

E) We observe that all cylinders and all surfaces of revolution are isothermic. We notice that, by

(18) d ∗ η12 = 0 and η12 corresponds to the principal coframe. Most helicoidal surfaces are not

isothermic. So, here we are going to give an intrinsic characterization of the isothermic helicoidal

surfaces.

For the isothermic helicoidal surfaces we have that both the (s, t) and principal coordinate

systems are isothermal. Therefore, the angle ψ between them, as explained in section 1(C) is

harmonic. Since ψ = ψ(s), (s, t) is isothermal system of coordinates and "2ψ = 0 we get that

ψ ′′ = 0 ⇐⇒ ψ(s) = as + b, a, b constants

If a = 0 then ψ = b constant. This case was developed in the previous section (D) and we

have that H is constant if and only if ψ is constant. Notice of course that all surfaces of constant

mean curvature and without umbilic points are isothermic, as we have proved in section 1 (E).

Therefore, in this section we will assume that a 
= 0. Then the constant b can be geometrically

eliminated by replacing s by s − b

a
. Hence, without loss of generality we shall assume that

ψ(s) = as, a 
= 0 constant (and H = H(s) non-constant)
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Now, (26) becomes

H ′

J
= −2a

sin 2as
, 0 < s <

π

2a
if a > 0,

π

2a
< s < 0 if a < 0

E = C

J sin 2as
= −2aC

H ′ sin2 2as
= −γ 4a2

H ′ sin2 2as
, with γ = C

2a


 (29)

Then the Gauss equation (22) becomes

(
H ′′

H ′ )
′ − 2γH ′ = 4a2

sin2 2as
(2 − 2γ

H 2

H ′ ) (30)

Notice that by the first equation of (29), in this setting, H ′ < 0 and thus H is strictly decreasing.

Equation (30) is of type Painlevé VI. Its integration is very involved and has been carried out in

Bobenko & Eitner 1998, by means of elliptic integrals and certain hypergeometric transcendents.

We refer the interested reader to this reference for the integration of this equation.

We note that in this situation J cannot be a constant. For otherwise, equations (29) and (30)

are not compatible. By (29) we find that it would be

H = J ln(cot as)+ A

with J , a, A constants. Then we plug this H into (30) and we see that it does not satisfy the

equation. In such a situation J can be constant, only when H is constant. Then the helicoidal

surface is a right circular cylinder considered as helicoidal surface.

Similarly, none of the following functions can be constant

K = a · c = H 2 − J 2

a = H + J

c = H − J

a

c
= H + J

H − J

unless again H is a constant and the surface is a right circular cylinder.

By (30) we findH = H(s) and then from (29) we findE = E(s). For the second fundamental

form we have

II = Lds2 + 2Mdsdt +Ndt2, where

L = E(H + J cos 2ψ) = EH + C cot(2as)

M = −EJ sin 2ψ = −C
N = E(H − J cos 2ψ) = EH − C cot(2as)

Again C = h is the pitch of the helicoidal motion that generates the helicoidal surface.
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For the two parameter (m, h = −C) family of isometric helicoidal surfaces (without preser-

vation of the mean curvature, in general), as done in Baikoussis & Kouforgiorgos 1997 1998, Bour

1862, Do Carmo & Dajczer 1982, Hitt & Roussos 1991, we have that

H =
√
m2E −m4(e′)2 − h2

E2
=

√
4m2E2 −m4(E′)2 − 4C2E

2
√
EE2

, (e = √
E)

Plugging this into (30) we find a differential equation for E of order four, much more complicated

than (30) itself. Therefore, it is much better to deal with (30), as done in Bobenko & Eitner 1998,

to findH and then findE, by (29). This is an effective way of determining explicitly the isothermic

helicoidal surfaces.

F) We can also characterize the helicoidal surfaces with J constant (
= 0) and H non-constant. As

we have explained before in (E) these surfaces cannot be isothermic. From (25) we find that for

J > 0 constant and ψ 
= 0 mod
π

2
.

H = J ln | cotψ | + A , A constant

E = C

J | sin 2ψ | , C > 0 constant


 (31)

Then the Gauss equation (22) gives

| sin 2ψ |(ln | sin 2ψ |)′′ = 2CJ [(ln | cotψ | + a)2 − 1] (32)

where a = A

J
constant.

Solving this equation we find ψ and then E and H from (31).

The second fundamental form is computed as before, by

II = Lds2 + 2Mdsdt +Ndt2, where

L = EH + EJ cos 2ψ = EH ± C cot 2ψ

M = −EJ sin 2ψ = ∓C
N = EH − EJ cos 2ψ = EH ∓ C cot 2ψ

Remark. If both J and H are constant for a surface then both principal curvatures are constant.

In such a case the surface is a piece of a plane, or a right circular cylinder, or a sphere.

G) Further Known Facts.

G1) All helicoidal surfaces with constant mean curvature can be isometrically and periodically

deformed under preservation of the constant mean curvature to a surface of revolution of the

same constant mean curvature (Delaunay surface). This deformation is differentiable and the

intermediate surfaces are helicoidal of the same constant mean curvature. All helicoidal surfaces

An. Acad. Bras. Ci., (2000) 72 (2)



SURFACES IN E3 INVARIANT UNDER A ONE PARAMETER GROUP 137

of a given constant mean curvature are obtained by this deformation. (See Do Carmo & Dajczer

1982, Hitt & Roussos 1991).

G2) The isothermic helicoidal surfaces with non-constant mean curvature accept a differentiable

one-parameter family of non-trivial and geometrically distinct isometries that preserve the mean

curvature from the surface to itself. Also, there are three other isometric associate surfaces to a

given isothermic helicoidal surface with the same mean curvature at the corresponding points of

the isometries.(See Bobenko & Eitner 1998, Cartan 1942, Roussos 1988b 1999a, Soyuçok 1995).

G3) All helicoidal surfaces admit the isometry (s, t) −→ (s,−t) from the surface to itself. It is

non-trivial when the orientation of the image surface of this isometry is kept to be the same with the

original orientation of the given helicoidal surface. This isometry obviously preserves H = H(s)

at the corresponding points. (See Roussos 1988b 1999b, Soyuçok 1995).

From these three facts we conclude that all helicoidal surfaces are Bonnet surfaces (see Roussos

1988b). By definition, a surface M2 in E3 is called to be a Bonnet surface if it admits at least

one non-trivial isometry from the surface to another surface or to itself that preserves the mean

curvature (equivalent to, preseves each principal curvature). (See Bobenko & Eitner 1998, Cartan

1942, Roussos 1988b, 1999a, Soyuçok 1995, Voss 1993). It is a fact that if a surface admits two

non-trivial and geometrically distinct isometries (that is, one is not the composition of the other

followed by an isometry of the whole E3) that preserve the mean curvature then it admits a whole

one-parameter and differentiable family of such isometries and the surface is isothermic. (See the

above references.)

G4) The helicoidal surfaces found in Baikoussis & Koufogiorgos 1997 satisfy that the ratio of

their principal curvatures is constant 
= 0,±1. Therefore, as we have seen in (E), they cannot be

isothermic. So, they admit only one non-trivial isometry preserving the mean curvature, the one

of (G3).

3. THE GAUSS EQUATIONS OF THE PREVIOUS SECTION

In this section we will discuss the Gauss equations found in the previous section. These are given

by the second order ordinary differential equations:

(23) J (ln J )′′ = 2B(H 2 − J 2) H, B > 0 constants and J = J (s) > 0

(24) H ′′ = ±2ABe
∓H
A (H 2 − A2), A > 0, B > 0 constants

(27) J (ln J )′′ = 2C

sin 2ψ
(H 2 − J 2), H, C > 0, 0 < ψ <

π

2
constants

(32) | sin 2ψ |(ln | sin 2ψ |)′′ = 2CJ [(ln | cotψ | + α)2 − 1],
C > 0, J > 0, α constants

(The Gauss equation (30) has been completely examined in Bobenko & Eitner 1998.)
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A) We observe that (23) and (27) are the same differential equations. We can put the constants B

and
C

sin 2ψ
under the same name A, so that both are written as

J (ln J )′′ = 2A(H 2 − J 2) H, A > 0 constants (33)

This differential equation was derived for the surfaces in our considerations with H constant and

under the assumption J > 0. By (21) and (26) we had that EJ = A, so that A > 0. We could

make the whole consideration a bit more general by allowing J 
= 0 and EJ = A constant such

that AJ > 0. Then the Gauss equation becomes

J (ln |J |)′′ = 2A(H 2 − J 2), H, A 
= 0 constants (34)

This differential equation can be expanded as

JJ ′′ − (J ′)2 = 2A(H 2 − J 2)J H, A 
= 0 constants and AJ > 0 (35)

We observe that in this new form J = 0 is allowed and we trivially obtain three constant solutions,

namely

J = 0, J = ±H

From these three trivial solutions we can distinguish the three following cases:

J = 0, H 
= 0 constant: The surface is (a piece of) a sphere

J = H = 0 : The surface is (a piece of) a plane

J = ±H 
= 0 constant: The surface is (a piece of) a right circular cylinder

These three cases were known a-priori to be surfaces invariant under a one-parameter group of

isometries ofE3 and with constant mean curvatureH . Even though they are derived from (35) they

cannot be derived by (33) and/or (34). So, equation (35) describes the surfaces in E3 with constant

mean curvature and invariant under a one-parameter group of isometries of E3 in all generality.

Apart from these three trivial cases we are going to examine the following harder ones: J 
= 0,

H = 0 (minimal surfaces) and J 
= 0 H 
= 0 constant. In both cases, since H is constant and the

surface is invariant under a one-parameter group of isometries ofE3 the isolatedness of the umbilic

points implies that there cannot exist any umbilic points. So, on a connected surface here, either

J > 0 or J < 0, i.e., J cannot change sign and cross zero at a point. Now we take up each of the

above cases.

Case J 
= 0 , H = 0 (minimal surfaces).

We write (33) as

JJ ′′ − (J ′)2 = −2AJ 3, A constant such that AJ > 0
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Then

(ln |J |)′′ = −2AJ (36)

The transformation J = 1

AF 2
, F 
= 0 function, turns this equation into

FF ′′ = (F ′)2 + 1 > 0

so that neither F nor F ′′ can be zero at any point. Then F ′ cannot be zero in any open interval and

so the last equation is equivalent to

[
ln [(F ′)2 + 1]]′ = (lnF 2)′

which can be written as

kdF√
(kF )2 − 1

= ±kds with k 
= 0 constant

The solutions of this equation are

F(s) = 1

k
cosh(±ks + d) , k 
= 0, d constants

Since cosh is an even function, without loss of generality we have

F(s) = 1

k
cosh(ks + c) , k 
= 0, c constants

Therefore

J (s) = 1

AF 2
= k2

A cosh2(ks + c)

and

E(s) = A

J(s)
= A2 cosh2(ks + c)

k2

with A 
= 0 , k 
= 0 , c constants. The constant c may be geometrically eliminated by a translation

of s, i.e., replace s by s − c

k
.

The second fundamental forms of these surfaces in the (s, t) coordinates is given by

L = ±EJ = ±A , M = 0 , N = ∓EJ = ∓A

for the minimal surfaces of revolution—catenoids—and

L = C cot 2ψ = A cos 2ψ

M = −C = −A sin 2ψ

N = −C cot 2ψ = −A cos 2ψ


 0 < ψ <

π

2
, mod π, constant
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for the minimal helicoids.

We observe that by changing the constant ψ we get the periodic deformation of the helicoids

into catenoids and vice versa, under preservation of the mean curvature H = 0. Because we were

able to easily integrate the above Gauss equation we have completely described what happens in

this case of minimal surfaces. (For another exposition of these surfaces, see Wunderlich 1952.)

We observe that |J (s)| is bounded above by
k2

|A| > 0 and J (s) −→ 0 as s −→ ±∞. Also,

E(s) is bounded below by
A2

k2
and E(s) −→ +∞ as s −→ ±∞. Therefore, all these surfaces

are complete and J (s) 
= 0 for all s which agrees with the fact that they contain no umbilic points.

Moreover, E(s) is a global function.

Case J 
= 0 , H 
= 0 constant.

In this situation equation (35) is a bit difficult to integrate. We can reduce its order by making the

transformation

y = (
J ′

J
)2 ≥ 0

Then

dy

ds
= 2

J ′

J
· JJ

′′ − (J ′)2

J 2
= 2

J ′

J
· 2A(H 2 − J 2)J

J 2

So

dy

dJ
= 4A

H 2 − J 2

J 2
and thus y = 4A(−H

2

J
− J )+ 4B ≥ 0,

where, for convenience in what follows, we have put 4B as the constant of integration. Going back

to J we find

dJ

ds
= ±

√
J (−4AH 2 + 4BJ − 4AJ 2) = ±2

√
J (−AH 2 + BJ − AJ 2)

A , B constants and AJ > 0.

As we see, the integral of the last equation is not elementary. In general, it can be computed in

terms of an elliptic integral of the first kind whose lower limit of integration is zero and its upper

limit varies in the interval [0, π
2

].
To solve the differential equation (35) we must compute the integral of

dJ

2
√
J (−AJ 2 + BJ − AH 2)

, A 
= 0 , H 
= 0 constants

Since J cannot be zero at any point and the surface is connected we first assume that

J = J (s) > 0 and therefore A > 0 constant.

Then we need −AJ 2 + BJ − AH 2 > 0. Let

r1 = B − √
B2 − 4A2H 2

2A
, r2 = B + √

B2 − 4A2H 2

2A
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We must have J such that

J > 0 and r1 ≤ J ≤ r2

For this, it must be B > 0 and B > 2A|H | . Under these conditions we have

0 < r1 < r2

and J is in the interval [r1, r2]. So we must compute∫ J

r1

dx

2
√
x(−Ax2 + Bx − AH 2)

, 0 < r1 ≤ J, x ≤ r2

Let x = u2. Then u = √
x > 0 and

√
r1 ≤ u ≤ √

r2. Then the integral transforms into∫ u

√
r1

2u du

2
√
u2(−Au4 + Bu2 − AH 2)

= 1√
A

∫ u

√
r1

du√
(u2 − r1)(−u2 + r2)

Now, we let u = √
r1 sec v. Then

cos v =
√
r1

u
, 0 ≤ v ≤ arccos

√
r1

r2

and the integral becomes

1√
A

∫ v

0

√
r1 sec v tan v dv√

r1 tan2 v(−r1 sec2 v + r2)
= 1√

A

∫ v

0

dv√
r2 − r1 − r2 sin2 v

Finally, we let
√
r2 sin v = √

r2 − r1 sin φ. Then

sin φ =
√

r2

r2 − r1
sin v, 0 ≤ φ ≤ π

2

and the integral changes to

1√
A

∫ φ

0

√
r2 − r1

r2

cosφ

cos v
dφ√

(r2 − r1)− (r2 − r1) sin2 φ
= 1√

Ar2

∫ φ

0

dφ√
1 − r2 − r1

r2
sin2 φ

The constant

k2 = r2 − r1

r2
= 2

√
B2 − 4A2H 2

B + √
B2 − 4A2H 2

is in (0, 1),

so that, ∫ φ

0

dφ√
1 − k2 sin2 φ

:= F(φ, k), 0 < k < 1 constant
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is an elliptic integral of the first kind in its Legendre’s form. Also the constant Ar2 is given as

Ar2 = B + √
B2 − 4A2H 2

2

and the integration of the differential equation leads to√
2

B + √
B2 − 4A2H 2

∫ φ

0

dφ√
1 − k2 sin2 φ

= ±s + c

c is a constant that can be geometrically eliminated, as a translation of the parameter s. Therefore,

we are going to omit it. Hence we get

φ = F−1(±
√
B + √

B2 − 4A2H 2

2
s)

where, with k fixed, F−1 is the inverse function of F(φ, k) considered as function of φ. We also

have

φ = Arc sin(
1

k

√
J − r1

J
)

Thus, using the definitions of r1 and k we find that

J = r1

1 − k2 sin2 φ
= 2AH 2

B + √
B2 − 4A2H 2 cos


2F−1(±

√
B + √

B2 − 4A2H 2

2
s)




Then, we find the first fundamental form I = E(s)(ds2 + dt2) by

E = A

J
=
B + √

B2 − 4A2H 2 cos


2F−1(±

√
B + √

B2 − 4A2H 2

2
s)




2H 2

(Remind: A > 0 , B > 2A|H | , H 
= 0 constants and F−1 is the inverse function of F(φ, k)

considered as a function of φ. The constant k is kept fixed at a time.)

If we consider the case J < 0 , then A < 0 constant and for the constant B we must have

B > 2|AH | , H 
= 0 constant. The results again are exactly the same.

For the second fundamental form we do the same computations as we have already done in

various places earlier (see parts of section 2).

As F(φ, k) , 0 < k < 1 constant, is never singular we may allow φ vary from −∞ to +∞.

Therefore

±s =
√

2

B + √
B2 − 4A2H 2

· F(φ, k)
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varies from −∞ to +∞ , also. We notice that E(s) = A

J(s)
is a global function bounded below

by the positive constant

B − √
B2 − 4A2H 2

2H 2
> 0

and bounded above by the positive constant

B + √
B2 − 4A2H 2

2H 2

These constants are sharp, since they are assumed by E(s). Therefore, the surfaces here are

complete, and the s−curves which are geodesics have arc-length (not the parameter s, but z =∫ s

s0

√
E(s)ds) that extends from −∞ to +∞. Also, the global function E(s) cannot approach

zero and cannot become large either for any given H 
= 0 constant. Similarly, the global function

J (s)(> 0) is bounded below by the positive constant

2AH 2

B + √
B2 − 4A2H 2

(A > 0 when J (s) > 0)

and above by the positive constant

2AH 2

B − √
B2 − 4A2H 2

These constants are sharp, since they are assumed by J (s). This means, J (s) = a − c

2
> 0 (a > c

are the principal curvatures) cannot approach zero and cannot become large either for any given

H 
= 0 constant.

In conclusion, the work of this part provides a new intrinsic characterization of all surfaces in

E3 invariant under a one-parameter group of isometries of E3 and with constant mean curvature.

This new exposition is original in the sense that it makes use of the global function J and it is based

on the general theory of section 1. Moreover, several old and new facts about these surfaces are

easily drawn.

Remark. Another approach to find the solution of the differential equation (35) when H 
= 0

constant, is to use the results in Do Carmo & Dajczer 1982. We find and invert the parameter

σ = σ(s) (page 433) in terms of elliptic integrals and then plug it into (3.9) (page 430). Then we

have

J (σ ) = A

E(σ)
= A

U 2(s(σ ))

Note that our (s, t) parameters here are the (σ, t) in Do Carmo & Dajczer 1982 and

E(σ) = U 2(s(σ ))
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Remark. In the limiting case B = 2|AH | we get that

E = |A
H

| and J = ±H 
= 0 constants

So, either a 
= 0 is constant and c = 0 or a = 0 and c 
= 0 constant. In this case we get the right

circular cylinders described as helicoidal surfaces, which are the only flat helicoidal surfaces with

constant mean curvature, see Do Carmo & Dajczer 1982 and Hitt & Roussos 1991.

B) We can write (24) more general as

H ′′ = 2ABe
−H
A (H 2 − A2) , A 
= 0 , B > 0 constants.

We have the trivial solutions H = ±A constants. Then H = ±J = ±A 
= 0 constant and the

surface is a right circular cylinder, a result expected a-priori, for surfaces with J constant.

We can reduce the order of this differential equation by one by making the standard transfor-

mation

dH

ds
= y(H)

Then,

d2H

ds2
= dy

dH
· dH
ds

= dy

dH
· y = d

dH
(
y2

2
)

After the computation we find

dH

ds
= y = ±2

√
−BA2e

−H
A (H 2 + 2AH − 2A2)+ C, C constant

We see that this is non-trivial to integrate.

C) Similarly, in equation (32) we may have J 
= 0 constant and C a constant such that CJ > 0.

We can write equation (32) as

sin(2ψ) cos(2ψ)ψ ′′ − 2(ψ ′)2 = CJ [(ln(cotψ)+ a)2 − 1] · sin(2ψ), 0 < ψ <
π

2

We observe thatψ = 0 ,
π

2
are limiting constant solutions, i.e., the first side of the equation becomes

zero for ψ = 0 ,
π

2
and the second side of the equation has limit equal to zero, as ψ −→ 0 or

π

2
.

Again as we did in (B), we can reduce the order by one, if we use the transformation

dψ

ds
= φ(ψ) �⇒ d2ψ

ds2
= dφ

dψ

dψ

ds
= dφ

dψ
· φ = d

dψ
(
φ2

2
)

and carry out the computation in the equation.
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4. THE FLAT HELICOIDAL SURFACES WITH NON-CONSTANT MEAN CURVATURE

In this section we study the flat helicoidal surfaces with non-constant mean curvature. Since H is

non-constant,K = 0 and there are no umbilic points these surfaces must be tangential developable

surfaces of curves in E3 (see Klingenberg 1977, page 59, 3.7.9 Theorem and 3.7.10 Proposition).

We will show that these curves are precisely the circular helices. By the facts proven in section 2,

part (E), these surfaces cannot be isothermic. First, we need to start with:

A) Some Preliminary Facts About the Tangential Developable Surfaces in E3.

A tangential developable in E3 can be “naturally" expressed as

X(u, v) = ς(u)+ ve1(u)

where ς(u) is a curve in E3, paramaterized by its arclength u, e1(u) = ς̇ (u) and v > 0 (v < 0

gives the second sheet of the tangential developable). (See Roussos 1999b, Soyuçok 1995) We can

call (u, v) the usual parameters of the tangential developable surface. Let e2(u) be the principal

normal of ς(u). Then ė1(u) = k(u)e2(u) where k(u) ≥ 0 is the curvature of ς(u). Then we have

Xu = e1(u)+ vk(u)e2(u)

Xv = e1(u)

So, the tangent plane of X(u, v) is spanned by e1 and e2 as long as v > 0 and k(u) > 0. (Even

though the vectors e1, e2 are originally defined along ς(u), their parallel translations along the

geodesic straight lines that foliate the whole tangential developable surface make up a global frame

field over the whole surface.) The first fundamental form in the coordinates (u, v) is given by:

I = (1 + v2k2(u))du2 + 2dudv + dv2

Now, we write

dX = ω1e1 + ω2e2 = (e1 + vke2)du+ e1dv = (du+ dv)e1 + (vkdu)e2

So, we have

ω1 = du+ dv

ω2 = vk(u)du

ω12 = k(u)du = 1

v
ω2

We orient the surface by the binormal of ς(u) e3 = e1 × e2. We let τ(u) be the torsion of ς(u).

Then by the formulas of Frenet-Serret we find:

ω13 =< de1, e3 >= 0 = 0 · ω1

ω23 =< de2, e3 >= τ(u)du = τ(u)

vk(u)
ω2
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This shows that {e1, e2} is the principal frame with {ω1, ω2} corresponding principal coframe and

corresponding principal curvatures

0 ,
τ (u)

vk(u)

We observe that if we have τ(u) = 0 at some u then the whole straight line l(v) := ς(u)+ ve1(u)

would consist of nonisolated umbilic points. (In particular the umbilic points at which both principal

curvatures are zero are called planar points.) (For more information about these surfaces see

Eisenhart 1909, where minimal curves and isotropic developables are discussed.)

From the previous exposition we easily get that the principal coordinates of X(u, v) are x, y

such that

X(x, y) = ς(y)+ (x − y)e1(y)

{
u = y

v = x − y

}
⇔

{
x = u+ v

y = u

}

In these coordinates the first fundamental form is

I = dx2 + (x − y)2k2(y)dy2

and the second fundamental form is

II = (x − y)k(y)τ (y)dy2

B) Tangential Developables of Circular Helices.

In this part we are going to prove that the flat helicoidal surfaces of non-constant mean curvature are

exactly the tangential developables of the circular helices. The flat helicoidal surfaces of constant

mean curvature are the circular cylinders, which can also be considered as surfaces of revolution

(and Delaunay Surfaces, since the mean curvature is constant).

Since the flat surfaces are the cylinders, cones, the tangential developables and smooth darnings

of pieces of theirs (see Klingenberg 1977 for instance) we see that apart from the circular cylinders,

a flat helicoidal surface must be a tangential developable.

We consider the tangential developable of a non-plane curve C(u) in E3

X(u, v) = C(u)+ v · e1(u) , v > 0 (or v < 0)

which we assume to be helicoidal. u is the arclength parameter of C(u) and e1(u) = Ċ(u). The

curvature k = k(u), and torsion τ = τ(u) of C(u) are not zero. We plan to show that k, τ are

constants (non-zero), which is just as proving that C(u) is a circular helix (see Millman & Parker

1977). Notice that here, the parametrization (u, v) is not the natural one, that is, the one of section
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2, but what we have earlier called usual parametrization. X(u, v) is foliated by the circular helices

of the helicoidal motion. We pick one of these helices, h(l) = X(u(l) , v(l)), parametrized by its

arclength l. We have h(l) = C(u(l))+ v(l) · e1(u(l)).

We let e2 be the principal normal ofC(u). e3 = e1 ×e2 is the binormal ofC(u). In the previous

part we saw that e1 , e2 are the principal directions of X(u , v) and e3 is its normal vector. The

frame e1, e2, e3 is the Serret-Frenet frame of C(u), and the Serret-Frenet formulas for C(u) are:

d

du



e1

e2

e3


 =




0 k 0

−k 0 τ

0 −τ 0






e1

e2

e3




(here the speed of C(u) is 1, since u is the arclength parameter).

We put h1(l) = h′(l) and we find:

h1(l) = u′(l) · e1(u(l))+ v′(l) · e1(u(l))+ v(l)k(u(l))u′(l) · e2(u(l))

= [u′(l)+ v′(l)] · e1(u(l))+ v(l)k(u(l))u′(l) · e2(u(l))

Since a helicoidal motion is a rigid motion of E3, for all helicoidal surfaces, we have that the angle

ψ , as defined in section 2, is constant along each of the helices of the helicoidal motion, but not

necessarily all are the surface, unless the mean curvature of the surface is constant. This then gives

(α) u′(l)+ v′(l) = h1(l) · e1 = c1 constant along h(l)

(β) k(u(l))u′(l)v(l) = h1(l) · e2 = c2 constant along h(l)

We now let (h1(l), h2(l), h3(l)) be the Darboux frame of h(l) with respect to X(u, v). Then

h3 = e3. Also, the following general formulas hold (see Spivak 1979, Volume 3, Chapter 4)

d

dl



h1

h2

h3


 =




0 kg kn

−kg 0 τg

−kn −τg 0






h1

h2

h3




The helices of the helicoidal motion in a helicoidal surface other than the circular cylinder are

not: geodesics, principal curves and asymptotic curves. (Use Chapter 4, Volume 3 in Spivak 1979

and the first and second fundamental forms of a helicoidal surface in the natural coordinates as

described earlier or as may be found in Baikoussis & Koufogiorgos 1997, 1998, Do Carmo &

Dajczer 1982). Therefore, as before for ψ , we have that kg , kn , τg are all non-zero constants

(along each individual helix). kg , kn are the geodesic and normal curvature respectively, and τg is

the geodesic torsion of h(l).

We have

d

dl
h1(l) = kgh2(l)+ knh3(l)
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Also, since (α) , (β) are true we compute that

d

dl
h1(l) = [u′(l)+ v′(l)]k(u(l))u′(l) · e2(u(l))−

v(l)k2(u(l))(u′(l))2 · e1(u(l))+ v(l)k(u(l))τ (u(l))(u′(l))2 · e3(u(l))

We know

〈h2(l) , e1〉 = constant

〈h2(l) , e2〉 = constant

So we get

(γ ) [u′(l)+ v′(l)]k(u(l))u′(l) = c3 constant

(δ) k2(u(l))(u′(l))2v(l) = c4 constant

We observe that u(l) cannot be constant (otherwise h(l) would be a straight line and not a helix),

so u′(l) 
= 0 , and v(l) 
= 0. Then from (β) and (δ) we have that c2 
= 0 and c4 
= 0. Since c2

is constant then v(l) is never zero. This means that the helix h(l) never intersects the curve C(u).

Now from (β) and (δ) we have

k(u(l))u′(l) = c4

c2
non-zero constant

v(l) = c2
2

c4
non-zero constant

Then v′(l) = 0 , so that from (a) we get

u′(l) = c1 (non-zero constant)

Hence

k(u(l)) = c4

c2c1
(non-zero constant)

Also

k(u(l))(u′(l))2 = c4c1

c2

or from (γ ) we get c3 
= 0 and

k(u(l))(u′(l))2 = c3

Next

d

dl
(h1(l)) · h3 = d

dl
(h1(l)) · e3
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from which we have

kn = v(l)k(u(l))τ (u(l))(u′(l))2

Thus

τ(u(l)) = kn

v(l)k(u(l))(u′(l))2

or

τ(u(l)) = kn

c1c2
non-zero constant.

The above computations show that k , τ are non-zero constants. Thus, C(u) is a circular helix,

proving our assertion.

Now, we examine the tangential developable surface of a circular helix more closely. We

consider C(u) a circular helix with u the arclength and

X(u, v) = C(u)+ ve1(u) , v > 0 (or v < 0)

the corresponding tangential developable. e1(u) is the unit tangent vector of C(u) and let k > 0 ,

τ 
= 0 constants be the curvature and torsion ofC(u) respectively. AssumeL to be the axis ofC(u)

with direction vectorD. ThenD is a fixed unit vector and from the theory of helices we know that

D · e1(u) = τ√
τ 2 + k2

constant

Hence, by taking derivative we get

D · k · e2(u) = 0 ⇔ D · e2(u) = 0 (k 
= 0)

(For more information about the theory of helices, see Millman & Parker 1977, sections 2.3, 2.4

and 2.5.)

Now, for any v 
= 0 fixed we consider the curve r(u) = C(u) + ve1(u). Then the tangent

vector of r(u) is

r ′(u) = e1(u)+ vke2(u)

This has length

|r ′(u)| =
√

1 + v2k2 > 0 constant

So, the unit tangent vector of r(u) is

T (u) = e1(u)+ vke2(u)√
1 + v2k2
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Hence,

D · T (u) = τ√
1 + v2k2

√
τ 2 + k2

constant

Therefore, r(u) is a helix with axial direction the same with the initial helix C(u). The fact that

r(u) is a circular helix follows from the computation of its curvature and torsion, which both turn

out to be respectively the constants.

kr = k · √
1 + v2(k2 + τ 2)√

1 + v2k2

τr = τ

1 + v2k2

So, r(u) is a circular helix with axis parallel to L. Now, L is, in fact, the axis of r(u) because if

0 < R constant is the distance of any point of C(u) from L then the distance of any point of r(u)

from L is easily computed to be √
R2 + v2

τ 2

k2 + τ 2

which is constant for any given v 
= 0 fixed. Therefore, all r(u)’s are coaxial helices with C(u)

and the tangential developable surface X(u, v) is a helicoidal surface.

C) Here, we study some consequences of the (s, t) natural coordinates for the flat helicoidal surfaces

with non-constant mean curvature. Depending on the orientation we have

J = ±H
K = 0 ⇔ (lnE)′′ = 0 ⇔ E(s) = AeBs , A > 0 , B 
= 0 constants

(B = 0, for the cylinders). The constant A can be geometrically set at 1. So, equations (19) in

section (2) become

2ψ ′ = − sin 2ψ(
±J ′

J
)

J ′

J
+ B = cos 2ψ(

±J ′

J
) , 0 
= B constant

From the first one we get that

ψ = arc cot(γ J±1) , γ 
= 0 constant

and then the second equation gives

(γ 2J±2 + 1)J ′ + BJ(γ 2J±2 + 1) = ±(γ 2J±2 − 1)J ′
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or

(+) 2J ′ + BJ(γ 2J 2 + 1) = 0

(−) 2γ 2J ′ + BJ(γ 2 + J 2) = 0

Both equations (+), (−) are integrated elementarily and we find

(+) J (s) = ±1√
δeBs − γ 2

(−) J (s) = ±γ√
δeBs − 1

Essentially both answers are the same. δ > 0 is a new constant and γ , B are non-zero constants

found before. So, we have found expressions of J (s), H(s), ψ(s), E(s), K(s) = 0 up to some

constants, in the natural parameters. (We remark that equations (26) could be used to solve the

above equations a bit faster.)

We are going to find the characterization of these surfaces in their natural parameters (s, t) and

find the relation of the (s, t) parameters with the usual parameters (u, v).

To make the computations simpler we will impose some normalization and the other cases are

variations of the one we discuss next. We eliminate the constant A > 0 by replacing s by s − lnA

B
so that we have

E(s) = eBs , B 
= 0 constant

We consider the case

0 < J = H = τ

2vk

So, we must have
τ

v
> 0. Then by the previous formulae we have

ψ = arc cot(γ J )

J 2(s) = 1

δeBs − γ 2

eBs = 1

δ

(
4k2

τ 2
v2 + γ 2

)

Since we are allowed to approach the initial helix C(u) by letting v → 0 and/or s → 0 we get that

it must be δ = γ 2 and therefore

eBs = 4k2

γ 2τ 2
v2 + 1 > 1 ⇒ Bs > 0 (v2 
= 0)

J 2(s) = 1

γ 2(eBs − 1)
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Hence we consider B > 0 and s > 0 (or B < 0 and s < 0) and we get

s = 1

B
ln

(
4k2

γ 2τ 2
v2 + 1

)

Set for convenience R = 4k2

γ 2τ 2
constant.We have

E(s) = eBs = Rv2 + 1s = 1

B
ln(Rv2 + 1)

If now t = t (u, v) we take

I = E(s)(ds2 + dt2) = (Rv2 + 1)

[
1

B2

(
2Rv

Rv2 + 1

)2

dv2 + t2udu
2 + 2tutvdudv + t2v dv

2

]

So, by comparison with I = (k2v2 + 1)du2 + 2dudv + dv2 we get

1

B2
· 4R2v2

Rv2 + 1
+ (Rv2 + 1)t2v = 1

t2u = k2v2 + 1

Rv2 + 1

tutv = 1

Rv2 + 1

These relations imply R = k2 and B = 2
√
R = 2k > 0 and consequently

γ 2 = 4

τ 2
and J 2(s) = τ 2

4(e2ks − 1)
= H 2(s).

Then,

s = 1

2k
ln(k2v2 + 1)

t = ±u± 1

k
arctan(kv)

So, in the natural parameters (s, t) we have that the first fundamental form is

I = e2ks(ds2 + dt2) , s > 0

and the relation between (s, t) and (u, v) is

s = 1

2k
ln(k2v2 + 1) > 0

t = ±(u+ 1

k
arctan(kv))


 ⇔



v = ±

√
e2ks − 1

k

u = ±
(
t − 1

k
arctan

√
e2ks − 1

)



Now, the second fundamental form is given by

II = Lds2 + 2Mdsdt +Ndt2
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such that, after direct computation and using thatψ = arctan (γ J )with γ = 2

|τ | and the expressions

for E(s) and J (s),

L = E(H + J cos 2ψ) = EJ(1 + cos 2ψ) = 2EJ cos2 ψ = |τ |√
e2ks − 1

M = −EJ sin 2ψ = −|τ |
N = E(H − J cos 2ψ) = EJ(1 − cos 2ψ) = 2EJ sin2 ψ = |τ |

√
e2ks − 1

(We observe that the pitch of the helicoidal motion is |τ |, as it is the case for unit speed helices.

C(u) is a unit speed helix because we have assumed that u is the arclength parameter. We have

analogous results for γ = − 2

|τ | , etc.)

So, we have expressed all the fundamental quantities of the flat helicoidal surfaces in the

natural parameters (s, t).

There are two expressions for t in terms of u and v of opposite sign. By keeping the orientation

the same in both cases the mapping from the surface to itself (s, t) −→ (s,−t) is an isometry that

preserves the mean curvature

H(s) = |τ |
2
√
e2ks − 1

, s > 0

and it is not trivial, because the new coefficient M will be +|τ | 
= 0 and therefore different from

the old one −|τ |. (See also Roussos 1999b.)

We also observe that

II = |τ |√
e2ks − 1

(
ds −

√
e2ks − 1dt

)2

Therefore, a vector with direction

dt

ds
= 1√

e2ks − 1

is an asymptotic vector. Solving this differential equation we get

t + c = 1

k
arctan

√
e2ks − 1 , s > 0 , c = constant

This is exactly the equation of the ruling straight lines in the coordinates (s, t) of this tangential

developable, which are asymptotic lines as well as lines of curvature with principal curvature zero

and geodesics.

Finally, since the relation of the principal coordinates (x, y) with the usual ones (u, v) was

found earlier to be x = u + v and y = u we immediately obtain the relation of the principal

coordinates (x, y) with the natural coordinates (s, t).
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5. HELICOIDAL SURFACES WITH NON-ZERO CONSTANT GAUSSIAN CURVATURE AND SURFACES

OF REVOLUTION WITH CONSTANT GAUSSIAN CURVATURE

A) Assume that for a helicoidal surface the Gaussian curvatureK 
= 0 is constant. (The caseK = 0

was thoroughly examined in section 4.) Then by the Gauss Equation we have

1

−2E
· (lnE)′′ = K ⇔ (lnE)′′ = −2KE

This is easily integrated, like equation (36) in section 3. We find that:

If K > 0 then

E(s) = σ 2

K cosh2(σ s)
, σ 
= 0 constant

If K < 0 then we have the following three solutions:

E(s) = 1

−Ks2
, s 
= 0

E(s) = σ 2

−K sin2(σ s)
, s 
= 0 , σ 
= 0 constant

E(s) = σ 2

−K sin h2(σ s)
, s 
= 0 , σ 
= 0 constant

Now, from H 2 − J 2 = K we have that

H = ±
√
J 2 +K

We assume that J > 0 (analogous work if J < 0). So, the first equation of (26) gives

± dJ√
J 2 +K

= [ln(cotψ)]′ , 0 < ψ <
π

2

For any K 
= 0 constant this gives

cotψ = γ (J +
√
J 2 +K)±1 , γ > 0 constant

Then from the second equation of (26) we get

J sin 2ψ = C

E
or,

2γ J (J + √
J 2 +K)±1

1 + γ 2(J + √
J 2 +K)±2

= C

E

Thus, with the (+) we have

2γ (J 2 + J
√
J 2 +K)

1 + γ 2K + 2γ 2(J 2 + J
√
J 2 +K)

= C

E

and with the (−)
2γ (J 2 + J

√
J 2 +K)

2(J 2 + J
√
J 2 +K)+ γ 2 +K

= C

E
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Now, for each of the E(s) found earlier, we solve for J 2 + J
√
J 2 +K and then we find J = J (s).

From E(s) and J (s) we find H(s) and ψ(s) by their formulas just reported. Then in the usual

way we find the coefficients of the second fundamental form L(s), M(s), N(s) of this helicoidal

surface. Hence, all fundamental quantities are explicitly discovered in terms of s. As a matter of

fact: With the (+) we find

J 2 = C2(1 + γ 2K)2

4γ (E − γC)(γKE + C)

and with the (−)

J 2 = C2(K + γ 2)2

4γ (γE − C)(KE + γC)

The rest of the computations proceed as usual.

B) The formulas found for E(s) when K > 0 or K < 0 constant are unchanged if the surface is

a surface of revolution instead of a helicoidal surface. Also, for K = 0 we get E(s) = AeBs ,

A > 0, B are constants (the same as in section 4). In this case ψ = 0, mod
π

2
, so by equation (20)

we get (again assume J > 0 and we have H = ±√
J 2 +K)

[ln(JE)]′ = ± dJ√
J 2 +K

= [ln(J +
√
J 2 +K)±1]′

So

JE = γ (J +
√
J 2 +K)±1 , γ > 0 constant

We solve this for J . When K 
= 0 constant we find

(+) J = γ√
E

√
K

E − 2γ

(−) J = γ√
E

√
EK + 2γ

When K = 0 we find that either E = A and J (s) = ±H(s) is anything or E = AeBs , B 
= 0 and

J = ±H = γ e
−
B

2
s
, γ > 0 constant. (In the first alternative we have the planes, the right circular

cylinders and all generalized cylinders. In the second alternative we have the right circular cones.)

So, we have found E(s), J (s), H(s) for all surfaces of revolution with constant Gaussian

curvature (zero, or non-zero) and then

L = E(s)(H(s)+ J (s)) , M = 0 , N(s) = E(s)(H(s)− J (s))

Therefore, we have a complete intrinsic characterization of these surfaces. Notice that the gener-

alized cylinders are included too. They may be considered as surfaces of revolution with axis at

infinity. For the generalized cylinders we may allow J (s) to be zero at some points and therefore

along the generators containing these points.
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6. HELICOIDAL SURFACES AND SURFACES OF REVOLUTION WITH RATIO OF PRINCIPAL

CURVATURES CONSTANT

A) The Helicoidal surfaces with ratio of principal curvatures constant were studied in Baikoussis

& Koufogiorgos 1997, because of their special properties. They were characterized implicitely by

means of a first order differential equation. Here we apply the previous theory and we are going to

characterize them again by a first order differential equation.

When the principal curvatures a > c satisfy

a = λc , λ constant and c 
= 0 , we also assume that

λ 
= 0 (case of non-flat helicoidal surfaces)

λ 
= 1 (there are no umbilic points)

λ 
= −1 (case of non-minimal helicoidal surfaces)

Then J = λ− 1

2
c > 0 and H = λ+ 1

2
c. Therefore

H = µJ , µ = λ+ 1

λ− 1
constant , µ 
= −1, 0, 1,±∞

Hence, the first equation of (26) gives

cotψ = γ Jµ , γ > 0 constant and 0 < ψ <
π

2

and the second equation of (26)

E = C(1 + γ 2J 2µ)

2γ Jµ+1
, (C > 0 constant)

The Gaussian curvature is

K = H 2 − J 2 = (µ2 − 1)J 2

Therefore the Gauss equation becomes

[
ln

(
1 + γ 2J 2µ

Jµ+1

)]′′
= (1 − µ2)

C

γ
· 1 + γ 2J 2µ

Jµ−1

The solution(s) of this equation will determine J = J (s) and then E(s), ψ(s), H(s), L(s), M(s),

N(s), in the way we have already seen several times before. To solve this equation for J > 0 when

µ 
= ±1, 0 is very hard. We can expand it to

γ 2[(1 + γ J 2µ)(J 2µ)′′ − [(J 2µ)′]2]
(1 + γ 2J 2µ)2

− (µ + 1)
JJ ′′ − (J ′)2

J 2
= (1 − µ2)

C

γ
· (1 + γ 2J 2µ)2

Jµ−1
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After some trivial simplification we can reduce the order by one by making the standard transfor-

mation

J ′ = dJ

ds
= y(J )

Then

J ′′ = d2J

ds2
= dy

dJ
· dJ
ds

= y · dy
dJ

= d

dJ
(
y2

2
)

The resulting first order differential equation characterizes these surfaces implicitely. Its complete

solution seems to be illusive. However, one may want to try some specific combinations of µ, γ ,

C lest he comes up with an equation easy to solve. (Say µ = ±1

2
, γ = 1, C = 2

3
, etc.) Finding J

by solving this equation, we find L, M , N , that is, all fundamental quantities of the surface.

B) The same problem for the surfaces of revolution is much easier because ψ = 0, mod
π

2
and

the equations can be explicitly integrated. (Also see Baikoussis & Koufogiorgos 1997 and Kühnel

1981, Baikoussis & Koufogiorgos 1997.)

Again H = µJ , K = (µ2 − 1)J 2. Equation (20) gives

[ln(JE)]′ = (ln J±µ)′

and so

E = γ J±µ−1 , γ > 0 constant

Then the Gauss equation becomes

(ln J )′′ = −2γ (±µ+ 1)J±µ+1

This is an equation for J > 0 of the form

(ln J )′′ = −2AJα , A, α constants and A · α 
= 0

It can be solved by making the transformation

J = 1

(
√|Aα|f ) 2

α

, f > 0 function

ff ′′ − (f ′)2 =

+1, if Aα > 0

−1, if Aα < 0
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The solutions of these new equations have been found in previous sections and are:

when + 1 , one solution

f (s) = cosh(ks + c)

k
, k 
= 0 , c constants

when − 1 , three solutions

f (s) = σs + c

σ
, σ 
= 0 , c constants

f (s) = sin(σ s + c)

σ
, σ 
= 0 , c constants

f (s) = sin h(σs + c)

σ
, σ 
= 0 , c constants

In all these solutions s extends in the maximal intervals so that the corresponding solutions stay

positive.

Hence, in any case J (s) is explicitly determined and then we get H(s), K(s), E(s), L(s),

M = 0, N(s) explicitly. So, we obtain an explicit determination of all fundamental quantities of

the surface. We observe that in the first case (+1) the resulting surface could be complete, since

−∞ < s < +∞. In the second case (−1) the surfaces are not complete, since s is not allowed to

run from −∞ to +∞. In the former case the completeness of the surfaces depends on the behavior

of E(s) at ±∞. But in the latter case the surfaces are not complete for sure.
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