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ABSTRACT
We develop a convenient surface theory in E2 in order to apply it to the class of the surfaces
invariant under a one-parameter group of isometries of E3. In this way we derive intrinsic
characterizations along with several results of subclasses of this class of surfaces that satisfy
certain preassigned properties. Intheprocessall resultsarealso effortlessly derived. Amongthese
subclasses are those with surfaces; of constant mean curvature, of constant Gaussian curvature,
isothermic, with constant difference or ratio of the principal curvatures.
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INTRODUCTION

Inthispart wedevel op somegeneral surfacetheory in E3to beappliedto thesurfacesinvariant under
a one parameter group of isometries of E2, that is, generalized cylinders, surfaces of revolution
and helicoidal surfaces. This theory develops some very useful results of surface theory in an
easy and straightforward manner, some of which can apply to any surface and not necessarily to
surfaces invariant under a one parameter group of isometries of E3. Furthermore, we reach results
concerning the class of surfaces with constant mean curvature.

When this theory is applied to the class of surfaces invariant under a one parameter group
of isometries of E2 we derive very easily some older known and many new results. Among the
new results we distinguish: (1) Intrinsic characterization of those surfaces in this class with the
difference of the principal curvatures constant. (2) Intrinsic characterization of the isothermic
helicoidal surfaces. (3) New intrinsic characterization of the surfaces in this class with constant
mean curvature. (4) Various interesting ordinary differential equations study worthy in their own
sake.
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The study and the solutions of the ordinary differential equations involved can change the
intrinsic results into explicit ones. These differential equations are very hard to crack down. They
are of second order and highly non-linear. Even though they can easily be reduced to first order
differential equations the integrals of these first order differential equations are far from being
elementary. In the case of minimal surfaces the Gauss equation can be easily integrated and yields
al known results in a very nice and straight way. Also, when the mean curvature is a non-zero
constant we can integrate the same equation by making use of dliptic integrals and thus obtain an
intrinsic characterization and some old and new results.

Finally, we examine the flat helicoidal surfaces with non-constant mean curvature (the ones
with constant mean curvature being the right circular cylinders). These are exactly the tangential
developable surfaces of circular helices. Apart from their “usual” parameters we find the principal
and the natural parameters. Next, we examine the helicoidal surfaces with non-zero constant
Gaussian curvature and the surfaces of revolution with constant Gaussian curvature. Last of all,
we examine the helicoidal surfaces and the surfaces of revolution with ratio of principal curvatures
constant. In all of the above cases we try to find all fundamental quantities of the surfaces as
explicitly as the equations alow in a certain coordinate system that we call natural coordinates.

1. SOME GENERAL SURFACE THEORY IN E3

A) We consider a surface M? in E® connected, oriented and of sufficient smoothness. We assume
that over M? there is a well-defined field of orthonormal frames x, ji, j2, js such that x € M?,
{j1, j»} isan orthonormal basis of the tangent plane of M2 at x and js isthe unit normal vector to
M? a x. On M? we consider the well known forms n; = dx - j;, i = 1, 2, 3 which are the dual
formstothevectors ji, jo, jsandfork,l = 1, 2, 3wedefinen,; = dji - j; which arethe connection
one-forms on M?2. All these forms satisfy the following well-known equations on M?:

ns =0 (since jz isthe unit normal vector to M?)

na=—nx (0,nx=0), k1=123

dx = nij1+ n2j2

dj1 = mzj2 + maj3 (1)
dj2 = n21j1+ n23J3

djz = na1j1 + n32j2

3
dne=Y myAm. k=123 (firststructural equation) @)
=1
3
dnu = Z M A i, k1 =1,2,3 (second structural equation) (©)]
n=1

(~ isthe symbol of the wedge product of forms and d is the exterior derivative of forms.)
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Since {11, n,} isabasis of formson M?, for the connection form ., we can write
N2 = pni+qn
for some smooth functions p, g. Then by (2) we get that

dni = pnmAn2
dnz=qni A n2

127

(4)

©®)

Since nz = 0 on M? then dns = 0 on M? and by (2) we have that 1713 A 71 + 123 A 172 = 0. S0, by

Cartan’'s Lemmawe can write that

ns =an+ Bn2
n23 = Bni+ymn
for some smooth functions o, 8, y .

We also have the following equations:

dni = —Kn1 Az (Gauss Equation)

d = VAN = —Bdny + yd
s = Tz 712 Pdnz +ydm (Codazzi-Mainardi Equations)

dnx =n21 Aniz = adny — Bdny

The mean and Gaussian curvatures of M2 are respectively

H = 1(+)
K = ay—p?

(6)

(GE)

(CME)

We will use the Hodge operator x which rotates the frames of the tangent and cotangent space of

M? by % So, acting on the one forms we have that

*N1 =12, *¥M2=—n1, *=-1

B) We will need the following result. Suppose that M2 has orthogonal parameters (s, ¢) such that

the first fundamental form is given by
[ =02+ n5=Eds®*+Gdt* (E>0, G>0)
These parameters become isothermal, that is, we can rewrite I as

I =(x,y)dx?+dy?, (> 0)
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if and only if

3?2  E
—In(=)=0
asot (G)

(see Eisenhart 1909, Stephanidis 1987).
Withn, = v Eds , 12 = ~/Gdt and 1, the corresponding connection form, then this condition
interms of formsis easily proven to be equivalent to

d*n12=0 (7)

(see Stephanidis 1987).

C) Now, we consider another typical field of frames on M?, x, eq, e, e3 = jz With w1, w, the
coframe corresponding to ey, e> and wy;, k, 1 = 1, 2, 3 the corresponding connection forms. We
take {e1, €2} to have the same orientation with {1, j»}. Then we can find a branch of the angle
from e; to j;, so that we can write

Jj1 =C0Syre1 + Sinyre;

. . (8)

Jj2 = —SiNyre; + COSYrer
N1 = COSYrwy + SN Yw, ©

N2 = — SiNYw; + COSY w;
n13 = any + P2 = COSY w13 + SIN Y w3 (10)

n23 = Bn1+ yn2 = —SINY w13 + COSY w23
Theforms n1, and w1, arerelated by

Nz =dy + w12 (11)

(The relations (10) and (11) follow from the previous equations by straightforward calculation.)
Therefore, d * 1o = d x dyr + d * w1o. Weknow that d « dy = Ay - d A with A, the Laplace-
Beltrami operator and d A the area element of M? n1 A 1, = w1 A wp. Hence by (7) we obtain the
following useful result:

If {n1, no} isderived fromisothermal coordinates, then {w1, w,} isalso derived fromisothermal
coordinates if and only if A,y = 0. Therefore, the angle  between any two isothermal systems
is harmonic.

D) Next, weare assuming that M2 hasno umbilic points (<= H? > K) and ey, e, aretheprincipal
unit vectors corresponding to principal curvatures a, c. Since M? is connected we may assume
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a > c. We have

W13 = awy, W3 = CW2
a—+c o+
H = > (= > y) (mean curvature)

K=a-¢ (=ay—pB? (Gaussiancurvature)

We set
=" JH?“K>0e K =H?—J?

From, (9), (10), (12), (13) and (15) we can compute that

a=Jcos2y + H
B =—-Jsn2y
y =—Jcos2y + H

We write the differentials

dyr = Y1 + Yonz
dH = Hiny + Honp

dJ = Jin + Jone

(thUS deflnlng 1#1» lﬂz, Hq, Hy, Jq, ]2).
From (3), (4), (5), (6) and (16) we can solve for 1, ¥, and find

1/ J Hs H,
=—-|—-——— —cos2 ——sm2 2
Y1 ( 7 7 (4 7 v+ p)

1 J]_ H2 . Hl
= —sin2y — — cos?2 2
iz 2<J + SN2y — —= cos2y + q)

So, the differential of  is given by

J1 Jo H>

1 1 Hy 1
dy =5 <—nz - —n1) —zsn2y (_771 - —nz) — 5 CoS2yr (—n1+ —n2

J J J 2

and hence

129

(12)
(13)
(14)

(15

(16)

>+ (pn1+qgn2)

Hy H> H> Hq
d(2y) = —sin2y <—771 — —172) — COS2yr <—n1 + 7172) +xdInJ + 211 an

J

This equation (17) along withd H = Hin1 + Han, consist of an equivalent form of the Codazzi-

Mainardi Equationswhen J # 0.

E) From (17) we can easily conclude two known facts about surfaces with constant mean curvature.

From (17) we get that H is constant if and only if d(2y) = xdIinJ + 2n1».
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Taking its exterior derivative and using the Gauss Equation we get
O=dxdInJ +d2np = (AzInJ —2K)n1 A np

So, all surfaces with constant mean curvature and without umbilic points satisfy the following
partial differential equation:

A InJ = A, InVH2 — K =2K, or AyIn(H? - K) = 4K

(This equation was first observed by G. Ricci. Also see Tribuzy 1980). In addition, if the surface
isminimal without umbilic pointsthen AsIn(—K) = 4K )

Furthermore, if H isconstant and ji, j» are the principal vectors eq, e, then ¢ = 0 (mod )
and (11) with (17) give

-1 1
a)12=7712=7*d|n]<:)*w12:*n12:§dan

(This equation is of course valid for any ¢ constant when H is constant.) Taking its exterior
derivativewefind d * wi, = d * n1p = 0.

Using (7) we conclude that

All surfaces with constant mean curvature and without umbilic points have principal coordi-
natesthat can becomeisothermal. (By definition, the surfacesfor which their principal coordinates
can become isothermal are called to be isothermic surfaces. (See, e.g., Eisenhart 1909).

Moreover, by putting ¥ = 0in (17) we straightforwardly obtain the following general char-
acterization of isothermic surfacesin E3: A surface in E2 without umbilic pointsis isothermic if
and only if

d (%wl — %a)z> =0

where here H; and H, are determined by the relation d H = Hiw; + Hyw,. With (u, v) principa
coordinates, this relation is equivalent to the following second order hyperbolic homogeneous
partial differential equation for H

Huv - (In\/j)vHu - (In\/j)qu =0

Also, if w1, = pw1 + ow, We obtain that the geodesic curvatures of the principal curves when
J #0Qare

la, as 1c c1
~ 27 a-c 7727 Ta-c
Therefore, if one of the principal curvatures is constant then the corresponding principal curveis
ageodesic. If both principal curvatures are constantsthen o = o = 0 and s0 w1, = 0. Therefore,
K=a-c=0andhencea =0o0rc =0. (Ifa = ¢ = 0then J = 0 and the surface is a piece of

and

0
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the plane, if a # 0 constant and ¢ = Othen J = a # 0 and the surface is apiece of aright circular
cylinder of radius 1/|a| and if a = ¢ # 0 constant then J = 0 and the surface is a pience of a
sphere of radius 1/|a|.) Similar manipulations of the previous formulae yield various well-known
results in surface theory (e.g., Liouville'sformula, p = 1 + cosyp + siny o, see Stephanidis
1987, applications to Bonnet surfaces etc.).

REMARK AND NOTE. Except for the planes and the spheres all surfaces with constant mean
curvature have isolated umbilic points. So, the above two results hold true over an open dense
subset of the surface whose complement consists of isolated umbilic points only. Theisolatedness
of the umbilic pointswhen H is constant, isawell-known fact that follows from (the analyticity of
such a surface and) the holomorphicity of the Hopf quadratic differential. (See Spivak 1979, Vol.
V, Ch. 10 and Hopf 1956, pp. 136-139.)

2. APPLICATION TO SURFACESINVARIANT UNDER A ONE-PARAMETER GROUP OF ISOMETRIES

A) A surface M2 invariant under a one-parameter group of isometriesof E3, iseither ageneralized
cylinder or a surface of revolution or a helicoidal surface. The first fundamental form for these
surfaces can be written as

[ = E(s)(ds®>+dr®), E(s)>0

where r is parameter along the orbits of the group of the isometries (straight lines, circles, helices
respectively) and s is parameter along the curves perpendicular to the orbits which are geodesics
(see Baikoussis & Koufogiorgos 1997, 1998, Do Carmo & Dajczer 1982, Hitt & Roussos 1991,
Eisenhart 1909, Soyugok 1995). So, (s, ¢) are isothermal geodesic coordinates and we call them
natural coordinates. We now et

e(s) =+ E(s)

0 0
. 0s o ot
J1= €(S) s J2 E(S)
ni=-e(s)ds, n2=e(s)dt
Hence,
e'(s) e'(s)
= dt = [In "dt = 18
n12 e(s) [Ine(s)] EG) n2 (18)
Also, weknow that H = H(s), J = J(s), ¥ = ¥ (s). We then write
H/ = d—H’ ¢ = d—J’ / — d_'(/f
ds ds ds

Whereas the generalized cylinders and the surfaces of revolution may contain umbilic points the
helicoidal surfaces contain no umbilic points (see Baikoussis & Koufogiorgos 1997 1998, Hitt &
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Roussos 1991, Roussos 1988ab). But, where J > 0 from (17) and (18) we have that

/

. H’ H
d2y) = — anz//Tds - cosZ:/det +*(InJ)ds + 2(Ine(s)) dt

/

H’ H
2y'ds = — sin21p7ds +[- cosZwT +(nJ) + (nE)\dt

Therefore we have

Zw’:—énzw%/ )
19

/

H
[IN(JE)] = cosZ:pT

B) For generalized cylinders and surfaces of revolution v = 0, mod T Thefirst equation of
(19) isthen satisfied identically. The second equation of (19) gives

/

[IN(JE)] = :I:% (20)

This equation is satisfied by all generalized cylinders and surfaces of revolution without umbilic
points and it implies that E is a global function. Moreover, if in this situation H is constant—
Delaunay Surfaces—we observe that

JE=B, B=>0 -constant (21

The Delaunay surfaces contain no umbilic points, for otherwise the umbilic points could not be
isolated. Then J > 0 non-constant and the Gauss Equation with (15) give

_—;Emnmm +(NEy] =K = H?— J? 22)

Here (In E),, = 0 and by (21) and (22) we get
J(nJ)" =2B(H? — J?) (23)

C) By means of differential equationswe can intrinsically determine the generalized cylinders and
the surfaces of revolution for which J = A > 0 constant. By (20) we have

. £H
(InE) =

+H

E=Be A , B >0 constant
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The Gauss equation (22) becomes

H
H' = +2ABe | A (H? — A4?) (24)

From this differential equation we find H and then we find E. It is of course trivially satisfied
for H = +A (= +J) constant, in which case we have the right circular cylinders. The second
fundamental forms of these surfaces are given by

II = Lds® + 2Mdsdt + Ndt?>, where

L=EH=xJ)
M=0
N=E®HZTFJ)

ReMark. If J = 0 for a surface then the surface is totally umbilical (the principal curvatures
are equal to one ancther). The totally umbilical surfaces are known to be pieces of planes and/or
spheres. Also, if J is anegative constant then a change of the orientation of a connected surface
changes J to be a positive constant.

D) Now assume v # 0, mod % , that is, the surface is a helicoidal one. Equations (19) become

B _ 2 = (In|coty|)’
J sn2y (25)

[InN(EJ|sin2y|)]' =0

Let us assume without loss of generality that 0 < ¢ < % Then

B oty = ~20 . o<y <
= = < < —
J sin2y’ 2
c (26)
E = - , C >0 constant
Jsin2y

(Inabit moregeneral settingwemay simply assume JC > 0.) Weobservethefollowing geometric
characterization: “ Ahelicoidal surface hasconstant mean curvatureif and onlyif theangle between
the principal curves and the helicesis constant.” (See Roussos 1988 ab)

The helicoidal surfaces with constant mean curvature have been completely determined in
explicit form in Do Carmo & Dagjczer 1982. Some additional properties of them are in Hitt &
Roussos 1991. Here, by means of (26) we give an alternative intrinsic characterization, asfollows:

When H and ¢ are constant with 0 < ¢ < % the Gauss equation given by (22) transforms
into an equationin J as

2C
J(nJ)" = m(ﬂz —J? (27)
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The solution of this equation determines J and then E by (26). For the second fundamental form
we have

II = Lds? + 2Mdsdt + Ndr?>, where
L=EH+ EJcos2y = EH + C cot 2y
M=—EJsn2y =—C

N=EH —EJcos2y = EH — Ccot2y

We observethat the constant C isthe pitch of the helicoidal motion, 4 in Baikoussis & Koufogiorgos
1997, Do Carmo & Dajczer 1982, Soyucok 1995, etc.

Changing ¢ by a constant, for two constant values v, and v, of ¥ we consider C; and C,
constants satisfying

C1 C
Sin 2y, ~sn 2y,

We then obtain two helicoidal surfaces with the same E, J and H (= constant). Therefore, they
are non-trivially isometric (since y1 # ) with the same constant mean curvature. For v, =0 or
% relation (28) forces C, = 0 and then the corresponding surface is a surface of revolution with
the same constant mean curvature H, i.e,, it is a Delaunay surface. This describes the periodic
deformation of ahelicoidal surface with constant mean curvature through helicoidal surfaces of the
same constant mean curvature. Moreover, all possible helicoidal surfaces with given H constant
are obtained in this way via this periodic deformation of the Delaunay surfaces. See Do Carmo
& Dajczer 1982, Hitt & Roussos 1991, and for their limit surfaces with respect to the parameters
involved see Sasai 1996.

(28)

E) We observe that all cylinders and all surfaces of revolution are isothermic. We notice that, by
(18) d * n12 = 0 and 512 corresponds to the principa coframe. Most helicoidal surfaces are not
isothermic. So, here we are going to give an intrinsic characterization of the isothermic helicoidal
surfaces.

For the isothermic helicoidal surfaces we have that both the (s, t) and principal coordinate
systems are isothermal. Therefore, the angle v between them, as explained in section 1(C) is
harmonic. Since Y = ¥ (s), (s, t) isisothermal system of coordinates and A,y = 0 we get that

Y =0&= Y(s) =as+b, a bconstants

If a = Otheny = b constant. This case was developed in the previous section (D) and we
have that A is constant if and only if v is constant. Notice of course that all surfaces of constant
mean curvature and without umbilic points are isothermic, as we have proved in section 1 (E).
Therefore, in this section we will assume that @ # 0. Then the constant b can be geometrically

- . b , ,
eliminated by replacing s by s — —. Hence, without loss of generality we shall assume that
a

Y(s) =as, a #0constant (and H = H(s) non-constant)
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Now, (26) becomes

H' —2a ) .
—_— = O<s<l|fa>0,l<s<0|fa<0
C —2aC 4a? .
E: " = ) :—]/—2, W|th )/:—
Jsin2as H'’sin” 2as H’sin* 2as 2a
Then the Gauss eguation (22) becomes
H// 4612 H2
—) —2yH' = 2-2 30
() =2 e e Ca ) (30)

Notice that by the first equation of (29), inthis setting, H < 0 and thus H is strictly decreasing.
Equation (30) isof type Painlevé V1. Itsintegration isvery involved and has been carried out in
Bobenko & Eitner 1998, by means of elliptic integrals and certain hypergeometric transcendents.
We refer the interested reader to this reference for the integration of this equation.
We note that in this situation J cannot be a constant. For otherwise, equations (29) and (30)
are not compatible. By (29) we find that it would be

H = JIn(cotas) + A

with J, a, A constants. Then we plug this A into (30) and we see that it does not satisfy the
equation. In such a situation J can be constant, only when H is constant. Then the helicoidal
surfaceisaright circular cylinder considered as helicoidal surface.

Similarly, none of the following functions can be constant

K=a-c=H?*—J?

a=H+J
c=H—-J
a_H—I—J
c H-—-J

unless again H isaconstant and the surface isaright circular cylinder.
By (30) wefind H = H (s) and thenfrom (29) wefind E = E(s). For the second fundamental
form we have

I1 = Lds®+2Mdsdt + Ndt?,  where

L =E(H+ Jcos2y) = EH + C cot(2as)
M=—EJsin2y = —C

N = E(H — Jcos2y) = EH — C cot(2as)

Again C = h isthe pitch of the helicoidal motion that generates the helicoidal surface.
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For the two parameter (m, h = —C) family of isometric helicoidal surfaces (without preser-
vation of the mean curvature, in general), as donein Baikoussis & Kouforgiorgos 1997 1998, Bour
1862, Do Carmo & Dajczer 1982, Hitt & Roussos 1991, we have that

_ VmPE —m*e)? —h? _ JAmPE? — mH(E)? — 4C2E’ =B

E? 2V EE?
Plugging thisinto (30) we find a differential equation for E of order four, much more complicated
than (30) itself. Therefore, it is much better to deal with (30), as done in Bobenko & Eitner 1998,
tofind H andthenfind E, by (29). Thisisan effective way of determining explicitly theisothermic
helicoidal surfaces.

H

F) We can also characterize the helicoidal surfaceswith J constant (£ 0) and H non-constant. As
we have explained before in (E) these surfaces cannot be isothermic. From (25) we find that for
J > Oconstantand v # 0 mod %

H=1JlIn|coty|+ A, A constant

C (31)
E=——— (C > 0constant
J|sin2y|

Then the Gauss equation (22) gives

|sin2y|(n|sin2y|)’ = 2CJ[(In|cot¥| + a)? — 1] (32)

A
wherea = i constant.

Solving this equation we find v and then E and H from (31).
The second fundamental form is computed as before, by

I1 = Lds® + 2Mdsdt + Ndr?, where
L=EH+ EJcos2y = EH £ C cot 2y
M =—EJsn2y = FC

N=FEH — EJcos2y = EH F C cot 2y

RemARk. [f both J and H are constant for a surface then both principal curvatures are constant.
In such a case the surface is a piece of aplane, or aright circular cylinder, or a sphere.

G) Further Known Facts.

G1) All helicoidal surfaces with constant mean curvature can be isometrically and periodically
deformed under preservation of the constant mean curvature to a surface of revolution of the
same constant mean curvature (Delaunay surface). This deformation is differentiable and the
intermediate surfaces are helicoidal of the same constant mean curvature. All helicoidal surfaces
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of a given constant mean curvature are obtained by this deformation. (See Do Carmo & Dajczer
1982, Hitt & Roussos 1991).

G2) The isothermic helicoidal surfaces with non-constant mean curvature accept a differentiable
one-parameter family of non-trivial and geometrically distinct isometries that preserve the mean
curvature from the surface to itself. Also, there are three other isometric associate surfaces to a
given isothermic helicoidal surface with the same mean curvature at the corresponding points of
the isometries.(See Bobenko & Eitner 1998, Cartan 1942, Roussos 1988b 1999a, Soyugok 1995).

G3) All helicoidal surfaces admit the isometry (s, 1) — (s, —t) from the surface to itself. Itis
non-trivial when the orientation of theimage surface of thisisometry iskept to be the samewith the
original orientation of the given helicoidal surface. Thisisometry obviously preserves H = H(s)
at the corresponding points. (See Roussos 1988b 1999b, Soyucok 1995).

Fromthesethreefactswe concludethat all helicoidal surfacesare Bonnet surfaces (see Roussos
1988b). By definition, a surface M2 in E® is called to be a Bonnet surface if it admits at least
one non-trivia isometry from the surface to another surface or to itself that preserves the mean
curvature (equivalent to, preseves each principal curvature). (See Bobenko & Eitner 1998, Cartan
1942, Roussos 1988b, 1999a, Soyucok 1995, Voss 1993). It isafact that if a surface admits two
non-trivial and geometrically distinct isometries (that is, one is not the composition of the other
followed by an isometry of the whole E?3) that preserve the mean curvature then it admits awhole
one-parameter and differentiable family of such isometries and the surface isisothermic. (Seethe
above references.)

G4) The helicoidal surfaces found in Baikoussis & Koufogiorgos 1997 satisfy that the ratio of
their principal curvaturesis constant # 0, £1. Therefore, as we have seen in (E), they cannot be
isothermic. So, they admit only one non-trivial isometry preserving the mean curvature, the one
of (G3).

3. THE GAUSS EQUATIONS OF THE PREVIOUS SECTION

In this section we will discuss the Gauss equations found in the previous section. These are given
by the second order ordinary differential equations:

(23) J(nJ)' =2B(H?-J? H, B>O0constantsand J = J(s) >0

H
(24) H" = +2ABe A(H?— A%, A>0. B> 0consants

2C T
27 InJ)Y = — (H*-J%. H 0,0 — constants
@7 JdnJ) sin21p( ). H C>00<y <3

(32) |sin2y|(n|sin2y )’ = 2CJ[(n|cot | + a)? — 1],

C >0, J >0, constants

(The Gauss equation (30) has been completely examined in Bobenko & Eitner 1998.)
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A) We observe that (23) and (27) are the same differential equations. We can put the constants B
and

- under the same name A, so that both are written as
sin 2y

J(nJ)" =2A(H?-J? H, A > 0constants (33)

This differential equation was derived for the surfaces in our considerations with H constant and
under the assumption J > 0. By (21) and (26) we had that EJ = A, sothat A > 0. We could
make the whole consideration a bit more general by allowing J # 0and EJ = A constant such
that AJ > 0. Then the Gauss equation becomes

J(n|J))" =2A(H? — J?), H, A # 0constants (34)
This differential equation can be expanded as
JJ" —(J? =2A(H?*—-J?%J H, A+#Oconstantsand AJ > 0 (35)

We observethat inthisnew form J = Oisallowed and wetrivially obtain three constant solutions,
namely

J=0, J=+4H
From these three trivial solutions we can distinguish the three following cases.

J =0, H # 0 constant: The surface is (a piece of) a sphere
J = H =0: Thesurfaceis (apiece of) aplane

J = +H # 0 constant: The surfaceis (a piece of) aright circular cylinder

These three cases were known a-priori to be surfaces invariant under a one-parameter group of
isometriesof E3 and with constant mean curvature H. Even though they are derived from (35) they
cannot be derived by (33) and/or (34). So, equation (35) describes the surfacesin E2 with constant
mean curvature and invariant under a one-parameter group of isometries of £3 in all generdity.
Apart from these three trivial cases we are going to examine the following harder ones. J # 0O,
H = 0 (minimal surfaces) and J # 0 H # 0 constant. In both cases, since H is constant and the
surfaceisinvariant under aone-parameter group of isometriesof E° theisolatedness of the umbilic
points implies that there cannot exist any umbilic points. So, on a connected surface here, either
J >0o0rJ <0,i.e., J cannot change sign and cross zero at a point. Now we take up each of the
above cases.
CaseJ #0, H = 0 (minimal surfaces).
We write (33) as

JJ" = (J)? = —2AJ3, A constant suchthat AJ > 0
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Then
nlJ)" = —2AJ (36)
. 1 . . o
The transformation J = Wk F # 0function, turns this equation into
FF'=(F)>4+1>0

so that neither F nor F” can be zero at any point. Then F’ cannot be zero in any open interval and
so the last equation is equivalent to

[IN[(FH?+11] = (nF?

which can be written as

kdF
VkF)?2Z -1

The solutions of this equation are

= +kds with k # 0 constant

1
F(s) = z cosh(+ks +d) , k#0, dconstants
Since cosh is an even function, without loss of generality we have

1
F(s) = p cosh(ks +¢) , k #0, cconstants

Therefore
k2
_] = =
®) = 34F2 = AcosPks £ 0)
and
A A2 cosh?(k
E(s) = _ A“cosh”(ks + ¢)

J(s) k2

with A £ 0,k # 0, ¢ constants. The constant ¢ may be geometrically eliminated by atranslation
of s,i.e, replaces by s — <
The second fundamental forms of these surfacesin the (s, ¢) coordinatesis given by

L=+EJ=4A , M=0 , N=%EJ=7FA

for the minimal surfaces of revolution—catenoids—and

L = Ccot2y = Acos2y
M=—-C=—-Asn2y 0<¢<%, mod 7, constant
N = —Ccot 2y = —A cos2yr
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for the minimal helicoids.

We observe that by changing the constant +» we get the periodic deformation of the helicoids
into catenoids and vice versa, under preservation of the mean curvature H = 0. Because we were
able to easily integrate the above Gauss equation we have completely described what happensin

this case of minimal surfaces. (For another exposition of these surfaces, see Wunderlich 1952.)
2

We observe that | J (s)| is bounded above by l% > 0and J(s) — O0ass — +o0. Also,

AZ
E(s) is bounded below by g and E(s) — 400 ass —> *oo. Therefore, all these surfaces

arecompleteand J (s) # Ofor al s which agrees with the fact that they contain no umbilic points.
Moreover, E (s) isaglobal function.
Case J # 0, H # 0 constant.
In this situation equation (35) is abit difficult to integrate. We can reduce its order by making the
transformation
J’

= (— 2 > O
y (J) >
Then
dy J o JJ = (J)? J' 2A(H?—-1J%J
L _p = Y’ _pr [T 7 77
ds J J?2 J J?
So
dy H? - J? H?
— =4A———— andthusy = 4A(—— — J) +4B > 0,
77 2 y ( 7 )+4B >

where, for conveniencein what follows, we have put 4B asthe constant of integration. Going back
to J wefind
‘;—Z = +VJ(—4AH2 + 4BJ — 4AJ2) = £2\/J(—AH2 + BJ — AJ?)

A, B constantsand AJ > 0.

Aswe see, theintegral of the last equation isnot elementary. In general, it can be computedin
terms of an elliptic integral of the first kind whose lower limit of integration is zero and its upper
limit variesin the interval [0, %1-

To solve the differential equation (35) we must compute the integral of

dJ
2,/J(=AJ2+ BJ — AH?)

Since J cannot be zero at any point and the surface is connected we first assume that

A # 0, H # 0 constants

J = J(s) > 0andtherefore A > 0 constant.

Thenweneed —AJ2+ BJ — AH? > 0. Let
_ B—J/BZ— 4A2H? B + VB2 — 4AZH?2

ro =

2A 2A

1
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We must have J such that
J>0andri<J <r
For this, it must be B > 0 and B > 2A|H| . Under these conditions we have
O<ri<nr

and J isintheinterval [ry, rp]. Sowe must compute

O<r<J,x<r

/J dx
n 2yx(—Ax2+ Bx — AH?) '

Letx = u?. Thenu = /x > 0and /r1 < u < \/r,. Thentheintegral transformsinto

/” 2u du _ 1 " du
o1 2/u?(—Au* + Bu? — AH?) VA VW2 = r)(—u? +rp)

Now, welet u = ,/risecv. Then

, O<wv<arccos |—
rp

COSv =

Vi z
u

and the integral becomes

1 v Jrisecvtanv dv 1 /” dv
VA Jo \/rltanzv(—rlseczv+r2) VA Jo \/rz—rl—rzsinzv

Finaly, welet /rosinv = /r, — riSing. Then

r2

sng = snv, 0<¢ <

N

r—nr

and the integral changesto

ro —r1 COS¢
/ d
ro COSv ¢ do

1 (¢ 1 ¢
ﬁfo V=) — (o —rysntg \/A_W/O \/1_r2_r1
2

sin® ¢
The constant
— 2 B2 —4A2H2
=127 isin (0, 1),
r2 B+ ~/B?_ 4AZHZ
S0 that,
¢ d
/ —¢ = F(¢,k), 0 <k < 1constant
0 V1—k?sin’¢
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isan elipticintegral of thefirst kind in its Legendre’s form. Also the constant Ar; is given as

B + /B2 — 4AZH?
2

and the integration of the differential equation leadsto

AI"2 =

=45 +c¢

2 /¢ deo
B+ +B2—-4A2H? Jo /1 —Kk2sin?¢
c isaconstant that can be geometrically eliminated, as atranglation of the parameter s. Therefore,
we are going to omit it. Hence we get

/B2 — AA2H?2
¢=F1(j:\/B+ 82 4AHS)

where, with k fixed, F~1 isthe inverse function of F(¢, k) considered as function of ¢. We also

have
. 1 J—I"l
= ArcSn(-=
¢ = Arcsin(z\/=——)

Thus, using the definitions of r; and k we find that

rq 2AH2
J= 5 =
1—k%sin“¢

B + B2 — 4A2[j2
B + /B2 = 4AZH2 cos 2F—1(i\/ + 5 5)

Then, we find the first fundamental form I = E(s)(ds? + dt?) by

B+ +/B? —4A%H?
2 $)

B + /B2 — 4A2H2 cos 2F—1(i\/

p=2=
J 2H?

(Remind: A > 0, B > 2A|H|, H # 0 constants and F~* is the inverse function of F (¢, k)
considered as afunction of ¢. The constant k is kept fixed at atime.)

If we consider thecase J < 0, then A < 0 constant and for the constant B we must have
B > 2|AH|, H # 0 constant. The results again are exactly the same.

For the second fundamental form we do the same computations as we have aready done in
various places earlier (see parts of section 2).

As F(¢,k),0 < k < 1 constant, is never singular we may allow ¢ vary from —oo to +oo.

Therefore

2
+s = -F(¢, k)
B + «/BZ — 4A2H?
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A
varies from —oo to +o00 , also. We notice that E(s) = m isaglobal function bounded below
S
by the positive constant

B — /B2~ 4A2H?

22 >0

and bounded above by the positive constant

B + /BZ— 4A2H?
2H?

These constants are sharp, since they are assumed by E(s). Therefore, the surfaces here are
complete, and the s—curves which are geodesics have arc-length (not the parameter s, but z =
f; VE(s)ds) that extends from —oo to +00. Also, the global function E(s) cannot approach
zero and cannot become large either for any given H # 0 constant. Similarly, the global function
J (s)(> 0) isbounded below by the positive constant

2AH?
B + /B2 — 4A2H?2

and above by the positive constant

(A > 0when J(s) > 0)

2AH?
B — /B2 — 4A2H?2

These constants are sharp, since they are assumed by J (s). Thismeans, J (s) = % >0(a >c
are the principal curvatures) cannot approach zero and cannot become large either for any given
H # 0 constant.

In conclusion, the work of this part provides anew intrinsic characterization of all surfacesin
E® invariant under a one-parameter group of isometries of E°3 and with constant mean curvature.
Thisnew expositionisoriginal in the sensethat it makes use of the global function J and it isbased
on the general theory of section 1. Moreover, several old and new facts about these surfaces are
easily drawn.

ReEMARK. Another approach to find the solution of the differential equation (35) when H # 0
constant, is to use the results in Do Carmo & Dajczer 1982. We find and invert the parameter
o = o(s) (page 433) interms of eliptic integrals and then plug it into (3.9) (page 430). Then we
have

A

1) = Ee) = U2so)

Notethat our (s, t) parameters here are the (o, t) in Do Carmo & Dajczer 1982 and

E(0) = U%(s(0))
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REMARK. Inthelimiting case B = 2|A H| we get that
A
E = |ﬁ| andJ = +H #0 constants

So, either a # Oisconstant and ¢ = 0 or @ = 0 and ¢ # O constant. In this case we get the right
circular cylinders described as helicoidal surfaces, which are the only flat helicoidal surfaces with
constant mean curvature, see Do Carmo & Dajczer 1982 and Hitt & Roussos 1991.

B) We can write (24) more general as

H
H' =2ABe A(H?>— A%, A#0, B>0 constants.

We have the trivial solutions H = +A constants. Then H = +J = +A # 0 constant and the
surface isaright circular cylinder, aresult expected a-priori, for surfaces with J constant.

We can reduce the order of this differential equation by one by making the standard transfor-
mation

dH )
ds =Y
Then,
d’H _dy dH dy _d (yz)
ds? dH ds dH 2 T dH 2

After the computation we find

H
dH -
o=y = iZ\/—BAZe A (H2+2AH —2A%)+C, C constant
N

We see that thisis non-trivia to integrate.
C) Similarly, in equation (32) we may have J # 0 constant and C a constant such that CJ > 0.
We can write equation (32) as

sin(2y) cos(2y) v — 2(yv")? = CJ(n(cot ) +a)®> — 1] - sin(2y), O <y < %

Weobservethaty = 0, % arelimiting constant solutions, i.e., thefirst side of the equation becomes

zerofory =0, T and the second side of the equation has limit equal to zero, asy —> O or %
Again aswedid in (B), we can reduce the order by one, if we use the transformation

ay dz‘ﬂ_d¢d1”_d¢ _d P?
g—‘ﬁ(lﬁ)ﬁﬁ—ﬁg—w%f’—w(?)

and carry out the computation in the equation.
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4. THE FLAT HELICOIDAL SURFACESWITH NON-CONSTANT MEAN CURVATURE

In this section we study the flat helicoidal surfaces with non-constant mean curvature. Since H is
non-constant, K = 0 and there are no umbilic points these surfaces must be tangential developable
surfaces of curvesin E2 (see Klingenberg 1977, page 59, 3.7.9 Theorem and 3.7.10 Proposition).
We will show that these curves are precisely the circular helices. By the facts proven in section 2,
part (E), these surfaces cannot be isothermic. First, we need to start with:

A) Some Preliminary Facts About the Tangential Developable Surfacesin ES.
A tangential developablein E3 can be “naturally" expressed as

X(u,v) = ¢(u) +vey(u)

where ¢ (1) isacurvein E3, paramaterized by its arclength u, e1 (1) = ¢(u) andv > 0 (v < 0
givesthe second sheet of the tangential developable). (See Roussos 1999b, Soyucok 1995) We can
call (u, v) the usual parameters of the tangential developable surface. Let e>(u) be the principal
normal of ¢(u). Thené1(u) = k(u)ex(u) where k(u) > 0 isthe curvature of ¢(u). Then we have
Xy = e1(u) + vk(u)ez(u)
Xv = el(u)
So, the tangent plane of X (u, v) is spanned by e; and e; aslongasv > 0 and k() > 0. (Even
though the vectors e1, e, are originaly defined along ¢ (u), their paralel trandations along the

geodesic straight lines that foliate the whol e tangential devel opable surface make up aglobal frame
field over the whole surface.) The first fundamental form in the coordinates (u, v) is given by:

I = (14 v2k%w))du® + 2dudv + dv?
Now, we write
dX = wie1 + wrer = (e1 + vkeo)du + erdv = (du + dv)eq + (vkdu)ey
So, we have
w1 =du+dv
wy = vk(u)du
w1 = k(u)du = > w2

We orient the surface by the binormal of ¢(u) ez = e1 x e2. We let T(u) be the torsion of ¢ (u).
Then by the formulas of Frenet-Serret we find:

wiz=<dey,e3>=0=0-w,
T(u)
vk(u)

wyz =< dey, e3 >= t(u)du = w2

An. Acad. Bras. Ci., (2000) 72 (2)



SURFACES IN E3 INVARIANT UNDER A ONE PARAMETER GROUP 146

This shows that {e1, e;} isthe principal frame with {w1, w,} corresponding principal coframe and
corresponding principal curvatures

T(u)
vk (u)

We observethat if we have (1) = 0 at some u then the whole straight linel(v) := ¢ (u) + vey(u)
would consist of nonisolated umbilicpoints. (Inparticular theumbilic pointsat which both principal
curvatures are zero are called planar points) (For more information about these surfaces see
Eisenhart 1909, where minimal curves and isotropic developables are discussed.)

From the previous exposition we easily get that the principal coordinates of X (u, v) arex, y
such that

X(x,y) =c(y)+ & —yewy)

{ u=y } { X=u-+v }
&
V=Xx-—Y y=u
In these coordinates the first fundamental formis
I =dx?+ (x — y)%k?*(y)dy?

and the second fundamental form is

1T = (x — y)k(y)T(y)dy?

B) Tangential Developables of Circular Helices.

Inthispart weare going to provethat theflat helicoidal surfaces of non-constant mean curvature are
exactly the tangential developables of the circular helices. The flat helicoidal surfaces of constant
mean curvature are the circular cylinders, which can also be considered as surfaces of revolution
(and Delaunay Surfaces, since the mean curvature is constant).

Sincetheflat surfacesarethe cylinders, cones, thetangentia devel opablesand smooth darnings
of piecesof theirs (see Klingenberg 1977 for instance) we see that apart from the circular cylinders,
aflat helicoida surface must be atangential devel opable.

We consider the tangential devel opable of a non-plane curve C (x) in E3

Xwu,v)=Cu)+v-e(u), v>0 (orv<0)

which we assume to be helicoidal. « is the arclength parameter of C(u) and e1(u) = C(u). The
curvature k = k(u), and torsion t = t(u) of C(u) are not zero. We plan to show that k, T are
constants (non-zero), which isjust as proving that C () isacircular helix (see Millman & Parker
1977). Noticethat here, the parametrization (u, v) isnot the natural one, that is, the one of section
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2, but what we have earlier called usual parametrization. X (u, v) isfoliated by the circular helices
of the helicoidal motion. We pick one of these helices, (1) = X (u () , v(l)), parametrized by its
arclength /. Wehave h(l) = C(u(l)) + v(l) - ex(u(l)).

Welet e, betheprincipal normal of C (u). e3 = e x ey isthebinormal of C(u). Intheprevious
part we saw that e; , e, are the principal directions of X (1 , v) and ez isits normal vector. The
frame ey, ey, e3 isthe Serret-Frenet frame of C (u), and the Serret-Frenet formulas for C (u) are:

d el 0 k O €1
d_u e = —k 0 T e
e3 0 —T O (o]

(here the speed of C(u) is1, since u isthe arclength parameter).
We put 21(1) = A’ (I) and we find:

ha) = u' (1) - ex @) + ') - ex(u @) + vk @)u' (1) - e2(u (D))
=[u' )+ D] - ex®) + vDk@D)u' () - e2(u(l))
Since ahelicoidal motionisarigid motion of E3, for al helicoidal surfaces, we havethat the angle

Y, as defined in section 2, is constant along each of the helices of the helicoidal motion, but not
necessarily all arethe surface, unless the mean curvature of the surfaceis constant. Thisthen gives

() w'({)+v' () =hi() -eg =cy constantaongh(l)
B) k(uD)u'(Hv(l) = hi(l) - e = ¢, constant along h(l)

We now let (hy(1), ha(l), ha(l)) be the Darboux frame of A (l) with respect to X (u, v). Then
h3 = e3. Also, the following general formulas hold (see Spivak 1979, Volume 3, Chapter 4)

S 0 k, k hy
E hz = —kg 0 Tg hz
h3 —kn —Tg 0 h3

The helices of the helicoidal motion in a helicoidal surface other than the circular cylinder are
not: geodesics, principal curves and asymptotic curves. (Use Chapter 4, Volume 3 in Spivak 1979
and the first and second fundamental forms of a helicoidal surface in the natural coordinates as
described earlier or as may be found in Baikoussis & Koufogiorgos 1997, 1998, Do Carmo &
Dajczer 1982). Therefore, as before for v, we have that &, , k, , 7, are al non-zero constants
(along each individual helix). k, , k, are the geodesic and normal curvature respectively, and 7, is
the geodesic torsion of A (l).
We have

d
ahl(l) = kgho(l) + knhs(l)
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Also, since («) , (B) are true we compute that

%hl(l) = [/ () + v O Tk’ () - ea(u(l)) —
V(K2 (D)@' (1)? - ex (D) + vk @) T @) @' (1))? - es(u(l))
We know
(ho(l) , e1) = constant
(ho(l) , ez) = constant
So we get

(y) [Wd)+vDlkd@)u'(l) =c3 constant
(%) K@) ()?v() =cs constant

We observe that u (1) cannot be constant (otherwise i (1) would be a straight line and not a helix),
sou'(l) # 0,and v(l) # 0. Then from (8) and (§) we have that ¢, # 0and ¢4 # 0. Since c;
is constant then v(!) is never zero. This means that the helix i (1) never intersects the curve C (u).
Now from (8) and () we have

k(u)Hu'(l) = % hon-zero constant
Cc2

v(l) = i—f non-zero constant
Then v/(l) = 0, so that from (a) we get

u'(l) = ¢1 (non-zero constant)
Hence

k(u()) = Cc—i (non-zero constant)
2C1

Also

CqC1

k(u() ' (1)) = -
or from (y) we get c3 # 0 and
k(@) ' (1))? = c3

Next

d d
E(hl(l)) ~h3 = E(hl(l)) -e3

An. Acad. Bras. Ci., (2000) 72 (2)



SURFACES IN E3 INVARIANT UNDER A ONE PARAMETER GROUP 149

from which we have
kn = vk )T (@) @' (1))?
Thus

T(ul)) =

vk D) (1))?

or

n

non-zero constant.

t(u) =

c1C2

The above computations show that k , T are non-zero constants. Thus, C («) isacircular helix,
proving our assertion.

Now, we examine the tangential developable surface of a circular helix more closely. We
consider C(u) acircular helix with u the arclength and

Xw,v)=Cu)+ver(w), v>0 (orv<DO0)

the corresponding tangential developable. e; () isthe unit tangent vector of C(u) andletk > 0,
T # 0 constants bethe curvature and torsion of C (u) respectively. Assume L to bethe axisof C(u)
with direction vector D. Then D isafixed unit vector and from the theory of heliceswe know that

T
D - 6‘1(14) = m constant
Hence, by taking derivative we get
D -k-ex(u) =0& D-ex(u) =0 (k#0)

(For more information about the theory of helices, see Millman & Parker 1977, sections 2.3, 2.4
and 2.5.)

Now, for any v # O fixed we consider the curve r(u) = C(u) + vei(u). Then the tangent
vector of r(u) is

r'(u) = e1(u) + vkeo(u)
This has length

|r'(u)| = v1+v2%2 >0 constant

So, the unit tangent vector of r(u) is

e1(u) + vkez(u)

JIT e

T(u) =
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Hence,

T
D -T(u) = constant
V1402212 + k2
Therefore, (1) is a helix with axial direction the same with the initial helix C (). The fact that
r(u) isacircular helix follows from the computation of its curvature and torsion, which both turn

out to be respectively the constants.

k- 1+ v2(k?2+12)
V14 v2%k?

_ T
T 1+ v2%k2

ky =

T

So, r(u) isacircular helix with axis parallel to L. Now, L is, in fact, the axis of r(«) because if
0 < R constant is the distance of any point of C(«) from L then the distance of any point of r (u)
from L iseasily computed to be

2
R? + 2t
k? + 72

which is constant for any given v # 0 fixed. Therefore, al r(u)’s are coaxia helices with C («)
and the tangential developable surface X (u, v) isahelicoidal surface.
C) Here, we study some consequencesof the (s, ¢) natural coordinatesfor theflat helicoidal surfaces
with non-constant mean curvature. Depending on the orientation we have
J=+H
K=0o (nE)' =0& E(s) = A¢BS | A >0, B +# 0 constants

(B = 0, for the cylinders). The constant A can be geometrically set at 1. So, equations (19) in
section (2) become

. +J’
2y’ = —sin2y( 7 )
J’ J’
7+B:c0321//( ri ), 0 # B constant

From the first one we get that
W = arc cot(yJE) , y # 0 constant
and then the second equation gives

2T+ DI+ BIPI+) =+ 2T - 1)
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or

(+) 2J'+BJx?%J*+1) =0
(=) 2T +BJ(y?+J%H=0

Both equations (+), (—) areintegrated elementarily and we find
+1

[§eBS — 2
=
VéeBs —1

Essentialy both answers are the same. § > 0 isanew constant and y , B are non-zero constants
found before. So, we have found expressions of J(s), H(s), ¥ (s), E(s), K(s) = 0 up to some
constants, in the natural parameters. (We remark that equations (26) could be used to solve the
above equations a bit faster.)

We are going to find the characterization of these surfacesin their natural parameters (s, ¢) and
find the relation of the (s, ) parameters with the usual parameters (u, v).

To make the computations simpler we will impose some normalization and the other casesare
. . I ) InA
variations of the one we discuss next. We eliminate the constant A > 0 by replacing s by s — —

B
s0 that we have

+) J(s)=

(=) )=

E(s) = eBs B #0 constant

We consider the case

T
O<J=H=——
= 2vk

So, we must have LS 0. Then by the previous formulae we have
v

Y = arc cot(yJ)

J2(s) !

§) = ————
SeBs—)/z
Bs_l 4k22 2
¢ —§<?” v

Since we are alowed to approach theinitial helix C () by letting v — 0 and/or s — 0 we get that
it must be § = y? and therefore

4k2
eBs — 22vz—i—1>1:>Bs>0 (v2 #£0)
Y4t
1
J2 ) = ——
y2eBs —1)
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Hencewe consider B > 0ands > 0 (or B < 0and s < 0) and we get
1 a2
S = Eln ()/2_[21) + 1)

constant. We have

2

Set for convenience R = 5
Yot

1
E(s)=eBS = Rv2 4+ 15 = = IN(Rv? + 1)

If now ¢ = t(u, v) wetake

1/ 2Rv \?
I = E(s)(ds? 4+ dt?) = (Rv®+ 1) [ﬁ (sz i 1) dv? + t2du® 4 2t,t,dudv + tfdv2:|

So, by comparison with I = (k?v? + 1)du? + 2dudv + dv? we get

1 4R%y?
- - R2 1l2=1
B2 Rzl T RVTDG
2 K22+ 1
1= —
" Rv24+1
1
Wty = ———-
Rv2+1

Theserelationsimply R = k2 and B = 2¢/R = 2k > 0 and consequently

2

4
yZ= = and J2(s) = = H?(s).
T

Then,
R In(k*v? + 1)
2k
t =4du =+ %arctan(kv)
S0, in the natural parameters (s, r) we have that the first fundamental formis

I = eZkS(ds2 +dt2) ,s>0

and the relation between (s, 1) and (u, v) is

1 Jo2ks _
s = —Ink%?+1) >0 - LL
2k 1 N k L
{ = e+ arctan(o) y o= % (z ~ Farctan V265 - 1)

Now, the second fundamental formis given by

I1 = Lds? + 2Mdsdt + Ndt?
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2

suchthat, after direct computation and usingthat ¢ = arctan (y J) withy = m andtheexpressions
T

for E(s) and J (s),

L =E(H+ Jcos2y) = EJ(1+4 cos2y) = 2EJ cos® y = LI
Velks —1
M =—EJsn2y = —|t|

N = E(H — Jcos2y) = EJ(1—cos2y) = 2EJ sin?yr = |t|y/e2ks — 1

(We observe that the pitch of the helicoidal motion is |z, asit is the case for unit speed helices.
C(u) isaunit speed helix because we have assumed that « is the arclength parameter. We have

analogous resultsfor y = —3 , €tc.)

So, we have expressed |aIT I| the fundamental quantities of the flat helicoidal surfaces in the
natural parameters (s, t).

Therearetwo expressionsfor ¢ intermsof u and v of oppositesign. By keeping the orientation
the samein both cases the mapping from the surfaceto itself (s, t) — (s, —¢) isanisometry that

preserves the mean curvature

7|
2v/e2ks — 1

and it is not trivial, because the new coefficient M will be +|t| # 0 and therefore different from
the old one —|t|. (See also Roussos 1999b.)

We aso observe that
2
7 LI <ds _Je2ks _ m)
Velks _1

Therefore, avector with direction

H(s) = s >0

dt . 1
ds e2ks _q

is an asymptotic vector. Solving this differential equation we get

1
t+c=Earctan\/e2kS—l, s >0, c=constant

This is exactly the equation of the ruling straight lines in the coordinates (s, ¢) of this tangentia
developable, which are asymptotic lines as well aslines of curvature with principal curvature zero
and geodesics.

Finally, since the relation of the principal coordinates (x, y) with the usual ones (u, v) was
found earlier tobe x = u + v and y = u we immediately obtain the relation of the principal
coordinates (x, y) with the natural coordinates (s, ¢).
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5. HELICOIDAL SURFACESWITH NON-ZERO CONSTANT GAUSSIAN CURVATURE AND SURFACES

OF REVOLUTION WITH CONSTANT GAUSSIAN CURVATURE

A) Assumethat for ahelicoidal surfacethe Gaussian curvature K # Oisconstant. (Thecase K =0

was thoroughly examined in section 4.) Then by the Gauss Equation we have

1
——-(nEY'=K InNE)’ = —2KE
—2E( ) & (InE)

Thisiseasily integrated, like equation (36) in section 3. We find that:
If K > Othen

02

ES) = ooshzos)

o # 0 constant

If K < 0 then we have the following three solutions:

1
E(S):W, s;éO
2

E(s) = s #0, o # 0constant

—Ksint(os)
2

ES) = = anizey

, s #0, o # 0constant
Now, from H? — J? = K we have that
H=+VJ2+K

We assume that J > 0 (analogouswork if J < 0). So, thefirst equation of (26) gives

Y inotyyr, o<y <X
VIZ¥K ’ 2

For any K # O constant this gives

coty =y(J +vJ2+ K)*! | y > 0constant

Then from the second equation of (26) we get

. C 2y J(J ++/J2 + K)*! C
Jsin2y = —  or, ==
E 1+y2(J +/I2+K)*2 E
Thus, with the (+) we have
2y (J2+ JVI2+K) C

1+ y2K +2y2(J2+ JVJ2+K) T E
and with the (—)

2y (J? 4+ JVJ2+K) C

202+ JVIZ¥K)+y2+ K E
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Now, for each of the E (s) found earlier, we solvefor J2+ J+/J? + K and thenwefind J = J (s).
From E(s) and J(s) we find H(s) and v (s) by their formulas just reported. Then in the usua
way we find the coefficients of the second fundamental form L(s), M (s), N(s) of this helicoidal
surface. Hence, all fundamental quantities are explicitly discovered in terms of s. As amatter of
fact: With the (+) wefind
- C2(1 + yZK)Z
4y(E —yC)(yKE + C)

and with the (—)
5 _ CZ(K + )/2)2
4y(yE — C)(KE 4+ yC)
The rest of the computations proceed as usual.

B) The formulas found for E(s) when K > 0 or K < 0 constant are unchanged if the surface is
a surface of revolution instead of a helicoidal surface. Also, for K = O we get E(s) = AeBs ,
A > 0, B are constants (the same asin section 4). Inthiscase v = 0, mod % so by equation (20)

we get (again assume J > Oandwehave H = ++/J2 + K)

dJ /
INJE) = +———— =[In(J +VJ2+ K)*!
[In(J E)] TR [(n(J + v J2 + K)*]

JE=y(J+VJ2+K)*, y >0 consant

We solve thisfor J. When K # 0 constant we find

+) J=-% K
- JVEVE-2
(=) J= —
\/E«/EK—FZ)/
When K = Owefind that either E = A and J(s) = £H (s) isanythingor E = AeBS, B # 0and

B
J==+H= ye_E , ¥ > 0constant. (Inthefirst alternative we have the planes, theright circular
cylindersand all generalized cylinders. In the second alternative we have theright circular cones.)
So, we have found E(s), J(s), H(s) for all surfaces of revolution with constant Gaussian

curvature (zero, or non-zero) and then
L=E(s)H(s)+J(s), M=0, N(s) = E(s)(H(s) — J(s))

Therefore, we have a complete intrinsic characterization of these surfaces. Notice that the gener-
alized cylinders are included too. They may be considered as surfaces of revolution with axis at
infinity. For the generalized cylinders we may alow J (s) to be zero at some points and therefore
along the generators containing these points.
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6. HELICOIDAL SURFACESAND SURFACES OF REVOLUTION WITH RATIO OF PRINCIPAL
CURVATURES CONSTANT

A) The Helicoidal surfaces with ratio of principal curvatures constant were studied in Baikoussis
& Koufogiorgos 1997, because of their special properties. They were characterized implicitely by
means of afirst order differential equation. Here we apply the previous theory and we are going to
characterize them again by afirst order differential equation.

When the principal curvaturesa > ¢ satisfy

a=xc, Aiconstantandc #0, wealsoassume that
A # 0 (caseof non-flat helicoidal surfaces)
A #1  (thereareno umbilic points)

A # —1 (caseof non-minimal helicoidal surfaces)

A—1 A+1

Then J = c>0and H = c. Therefore

A+1
H=uJ, M=A+1constant,uyé—1,0,1,ﬂ:oo

Hence, the first equation of (26) gives

cotyy =yJ*, y > 0constantand 0 < <%

and the second equation of (26)

Cc(1 ZJZ/L
E:L

5, i , (C > 0 constant)
YV

The Gaussian curvatureis
K=H?>-J?=u?-1)J>?

Therefore the Gauss equation becomes

1+ y2724\7" C 1+ yp2J2
[In<—l =1-pdH— ——
Jprt y JH®

The solution(s) of this equation will determine J = J(s) and then E (s), ¥ (s), H(s), L(s), M(s),
N(s), intheway we have already seen several timesbefore. To solvethisequationfor J > 0when
u # +1, 0isvery hard. We can expand it to

AL+ y I3 (2 = [(J2)P] JI"— (02

C (A4 y22)?
(14 y2J21)2 —(n+D J2 :

2_
(l—u)y Y=
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After some trivial simplification we can reduce the order by one by making the standard transfor-
mation

r=%_.n
a7
Then
, _d*] dy dJ _  dy d(yz)

T ds2 a7 ds Y a1 T di 2

Theresulting first order differential equation characterizes these surfacesimplicitely. Its complete
solution seemsto beillusive. However, one may want to try some specific combinations of w, v,

1 2
C lest he comes up with an equation easy to solve. (Say u = ii’ y=10C= 3’ etc.) Finding J
by solving this equation, wefind L, M, N, that is, all fundamental quantities of the surface.

B) The same problem for the surfaces of revolution is much easier because ¥ = 0, mod T and
the equations can be explicitly integrated. (Also see Baikoussis & Koufogiorgos 1997 and Kthnel
1981, Baikoussis & Koufogiorgos 1997.)

Again H = puJ , K = (u? — 1)J2. Equation (20) gives

[(IN(JE)] = (InJ**y
and so
E=yJ* 1 > 0constant
Then the Gauss eguation becomes
(nJ)" = =2y (£p + g+t
Thisisan equation for J > 0 of the form
(InJ)' = —2AJ%, A, aconstantsand A - o # 0

It can be solved by making the transformation

1 .
J = —f2 , f > Ofunction
(VIAaff)«
£ (f/)z +1, if Aa >0
-1, if Aw <O
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The solutions of these new equations have been found in previous sections and are:

when + 1, one solution

f(S)Zw, k #0, c constants
when — 1, three solutions

fls) = Os; ‘. o # 0, cconstants

f(S)IW, o # 0, cconstants

f(S)ZW, o # 0, ¢ constants

In all these solutions s extends in the maximal intervals so that the corresponding solutions stay
positive.

Hence, in any case J(s) is explicitly determined and then we get H(s), K(s), E(s), L(s),
M = 0, N(s) explicitly. So, we obtain an explicit determination of all fundamental quantities of
the surface. We observe that in the first case (+1) the resulting surface could be complete, since
—00 < § < to00. Inthe second case (—1) the surfaces are not complete, since s is not allowed to
run from —oo to +o0. Intheformer case the completeness of the surfaces depends on the behavior
of E(s) at +oo. But in the latter case the surfaces are not complete for sure.
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