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ABSTRACT

We use equivariant geometry methods to study and classify zero scalar curvatureO(p + 1) ×
O(p + 1)-invariant hypersurfaces inR2p+2 with p > 1.
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1. INTRODUCTION

The methods of equivariant geometry have been applied successfully by many authors to obtain

and classify explicit examples of hypersurfaces, with a given condition on the r-th mean curvature,

that are invariant by the action of an isometry group (see, for instance, Hsianget al. 1983, Hsiang

1982, do Carmo & Dajczer 1983, Bombieriet al. 1969, Alencar 1993).

O. Palmas (Palmas 1999), resuming a work started initially by T. Okayasu (Okayasu 1989) and

using ideas contained inAlencar, 1993, published a work in which he approaches the hypersurfaces

with zero scalar curvature inR2p+2, invariant by the action of the groupO(p + 1)×O(p + 1). In

his article, Palmas studied only the casep = 1.

The objective of this work is to announce and give an sketch of proof of a classification theorem

for the casep > 1. Theorbit space of the action is the set	 = {
(x, y) ∈ R2; x ≥ 0, y ≥ 0

}
and

the invariant hypersurfaces are generated by curvesγ (t) = (x (t) , y (t)), the so calledprofile

curves, that satisfy the following diferential equation

0 = S2 = p
(−x ′′ (t) y ′ (t) + x ′ (t) y ′′ (t))

(x ′(t))2 + (y ′(t))2

(
y ′ (t)
x(t)

− x ′ (t)
y(t)

)

+1

2
p(p − 1)

((
y ′ (t)
x(t)

)2

+
(
x ′ (t)
y(t)

)2
)

− p2x
′ (t) y ′(t)
x (t) y (t)

. (1)
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In order to study the profile curves of such hypersurfaces we proceeded as in Alencar 1993,

analyzing the trajectories of an associated vector fieldX. Each trajectoryφ(t) = (u(t), v(t)) of X

is associated to a familyMλ of hypersurfaces generated by profile curvesγλ(t) = (λx(t), λy(t)),

determined byφ(t)up to homothety. The profile curvesγ (t) in the orbit space of these hypersufaces

are one of the following types:

A) γ (t) is one of the following half-straight line

γ1 (t) = (cos(α) t, sin(α) t) or γ2 (t) = (sin(α) t, cos(α) t)

wheret ≥ 0 andα = 1
4 arccos

(
3−2p
2p−1

)
(see figure 1);

B) γ (t) is regular, intersects orthogonally one of the half-axesx ≥ 0 or y ≥ 0 and asymptotizes

one of the half-straight lines in case A), whent −→ +∞ or t −→ −∞ (see figure 1);

C) γ (t) is the union of two curvesβ1 : (−∞,0] −→ 	 andβ2 : [0,+∞) −→ 	, β1(0) = β2(0)

being a singularity. The curvesβi do not intesect the boundary of the orbit space, and asymptotizes

the half-straight lines of the case A, whent −→ ±∞ (see figure 1 );

D) γ (t) is regular and does not intersect the boundary of the orbit space and asymptotizes both

half-straight lines of the case A, whent −→ ±∞ (see figure 1)
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Fig. 1 – Profile curves.
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We will denote byCα andCπ
2 −α the cones generated by the half-straight lines of type A.

The main result of this work is the theorem below classifingO(p + 1) × O(p + 1)-invariant

hypersurfaces according to their profile curves.

Classification Theorem. The O(p + 1) × O(p + 1)-invariant hypersurfaces in R2p+2 with

p > 1 and zero scalar curvature belong to one of the following classes:

1. cones with a singularity in the origin of R2p+2(type A).

2. hypersurfaces that have one orbit of singularities and that are asymptotic to both the cones

Cα e Cπ
2 −α (type C).

3. regular hypersurfaces that are asymptotic to the cone Cα (type B).

4. regular hypersurfaces that are asymptotic to the cone Cπ
2 −α (type B).

5. regular hypersurfaces that are asymptotic to both cones Cα and Cπ
2 −α (type D).

As a corollary we obtain the following result.

Theorem A. Let M2p+1 be an O(p + 1) × O(p + 1)-invariant hypersurface in R2p+2, complete

and with zero scalar curvature. Then M is generated by a curve of type B or D. Moreover

i) If M is generated by a curve of type B, then M is embedded and asymptotic to one of the

cones Cα or Cπ
2 −α;

ii) If M is generated by a curve of type D, then M is embedded and asymptotic to both of the

cones Cα and Cπ
2 −α.

The conesCα andCπ
2 −α, generated by the half-straight lines in case A are characterized in the

following theorem:

Theorem B. If M2p+1 is an O(p + 1) × O(p + 1)-invariant hypersurface in R2p+2, with zero

scalar curvature whose profile curve makes a constant angle with the x-axes then M is one of the

cones Cα or Cπ
2 −α.

This work is organized as follows. In section 2 we reduce the study of the profile curvesγ (t)

of the invariant hypersurfaces inR2p+2, with zero scalar curvature, to the study of the trajectory

φ(t) = (u(t), v(t)) of a vector fieldX. Then we use the qualitative theory of ordinary differential

equations, together with a geometric analysis of the behavior ofX, to obtain a description of its

trajectories.

In section 3, we present sketches of the proofs of the theorems announced above.
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2. ANALYSIS OF THE VECTOR FIELD X

The regular curves(x(t), y(t)) satisfing the equationS2 = 0 are invariant by homotheties and,

therefore, for each solutionγ (t) of (1) we have a familyMλ of invariant hypersurfaces with zero

scalar curvature, generated by the curvesγλ(t) = (λx (t) , λy (t)). So we can apply the method

developed in (Bombieriet al. 1969) to study the corresponding differential equation. Also note

that, if a curve(x, y) is a solution of equation (1), then(y, x) is also a solution.

Without loss of generality, we may assume that the curvesγ (t) are parametrized by arc length.

Therefore, wheny = y (x) we obtain

d2y

dx2
=

(
1 +

(
dy

dx

)2
)[

−p(p−1))
2

(
y

x

(
dy

dx

)2 + x
y

)
+ p2 dy

dx

]

p
(
−x + y

dy

dx

) . (2)

Proceeding as in Bombieriet al. 1969 we introduce the parameters

u = arctan
(y
x

)
andv = arctan

(
y ′

x ′

)
(3)

which are invariant by the homothety(x, y) �−→ λ (x, y) . Assumingu′ �= 0, we rewrite equation

(1) as the system

du

dt
= X1(u, v) = −1

4
p sin(2u)[sin(2u) − sin(2v)]

dv

dt
= X2(u, v) = 1

8
p[2 (p − 1) − cos(2u − 2v) + (2p − 1) cos(2u + 2v)].

We associate to this system the vector fieldX(u, v) = (X1(u, v),X2(u, v)) in the(u, v)-plane.

Since our orbit space is the region	, we need information just forx, y ≥ 0, corresponding

to the regionR = {(u, v) ; 0 ≤ u ≤ π
2 ,−π ≤ v ≤ π} in the (u, v)-plane .We observe thatX is

bounded,π -periodic in both variables and invariant by a translation of(π2 ,
π
2 ). So, it is enough to

analyse it in the interval[0, π
2 ] × [0, π ].

In order to characterize the phase portrait of the fieldX we make a geometric study of its

behaviour. This study gives us information about the increasing and decreasing intervals of the

coordinatesu(t) andv(t) of an orbitφ(t) = (u(t), v(t)), the types of singularities thatX presents

and a transversality ofX on special curves. This tranversality supplies barriers for the possible

behaviors of those orbits ofX.

These informations, together with the tubular flow theorem and Poincaré-Bendixson’s theorem

allow us to prove the following proposition, where we use the notation:

R1 = {u < v <
π

2
− u} ∩ {0 < u <

π

4
},

R2 = {0 ≤ v < u} ∩ {0 ≤ v <
π

2
− u, },
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R3 = {π
2

− u < v < u} ∩ {π
4

< u <
π

2
},

R4 = {π
2

− u < v ≤ π

2
} ∩ {u < v ≤ π

2
}

and

R−π
i = Ri + (−π,0)) i = 1, ...,4.

Proposition 1. The trajectories φ(t) of X = (X1, X2) are defined for all values of t . In the region

R = {
(u, v) ∈ R2; 0 ≤ u ≤ π

2 ,−π ≤ v ≤ π
}

their possible behaviors is one of the following:

1) φ(t) is a vertical trajectory with α-limit
(
0,−π

2

)
and ω-limit

(
0, π

2

)
, or a vertical trajectory

with α-limit
(
π
2 ,0

)
and ω-limit

(
π
2 , π

)
,or still a vertical trajectory with α-limit

(
π
2 ,−π

)
and

ω-limit
(
π
2 ,0

)
.

2) φ(t) is a vertical half-trajectory withα-limit
(
0,−π

2

)
, or a vertical half-trajectory withω-limit(

0, π
2

)
.

3) φ(t) is a trajectory in
(
0, π

2

)× (
0, π

2

)
with α-limit

(
π
2 − α, π

2 − α
)

and ω-limit (α, α) going

through the points of J1 = {(
u, π

2 − u
) ; 0 < u < π

2

}
where α = 1

4 arccos
(

3−2p
2p−1

)
.

4) φ(t) is a connection of saddle points contained in the region R3 ∪ R4 with α-limit(
π
2 − α, π

2 − α
)

and ω-limit
(
0, π

2

)
.

5) φ(t) is a connection of saddle points contained in the region R1 ∪R2 with α-limit
(
0, π

2

)
and

ω-limit (α, α).

6) φ(t) is a connection of saddle points contained in the region R1 ∪R2 with α-limit
(
π
2 ,0

)
and

ω-limit (α, α).

7) φ(t) is a connection of saddle points contained in the region R3 ∪ R4 with α-limit(
π
2 − α, π

2 − α
)

and ω-limit
(
π
2 ,0

)
.

8) φ(t) is a trajectory contained in the region R1 ∪ R2 ∪ (0, π
2 ) × [−π

2 ,0] ∪ R−π
4 ∪ R−π

3 , with

α-limit
(−π

2 − α,−π
2 − α

)
and ω-limit (α, α).

9) φ(t) is an orbit, or part of one, obtained by a translation of (0,±π), of one of the orbts given

in the itens 1-8 .

3. O(p + 1) × O(p + 1)-INVARIANT HYPERSURFACES IN R2p+2

The hypersurfaces of type A (item 1 of the Classification theorem) are given by the conesCα e

Cπ
2 −α and characterized in Theorem B, whose proof consists in to use that, ifγ (t) = (x (t) , y(t))

is a solution withy(t) = tanαx(t), then it satisfies the equation 0= 1 +
(

−4p+2
p−1

)
sin2 2α

4 . This,

together with the fact thatγ is parametrized by arc length, give us the result.
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Theorem A follows from the Classification theorem, Lemma 1 and Remark 1 below.

Lemma 1. Let φ(t) = (u (t) , v (t)) be a trajectory with α-limit (π2 − α,−π
2 − α) and ω-limit

(α, α). Let γ (t) = (x (t) , y (t)) be the associated profile curve. Then φ(t) intersects the segment

l = {(
π
4 , v

) : −π < v < π
2

}
exactly once, so γ (t) intersects the diagonal y = x exactly once.

Therefore, γ does not possess self-intersections and the hypersurface generated by γ is embedded

and complete.

Remark 1. If γ is a profile curve associated to a connection of saddle points, then γ is a graph

over one of the axes x or y, and intersects it orthoganally. Therefore the hypersurface generated

by γ is embedded and complete.

The proof of the Classification theorem is a consequence of the Proposition 1, together with

the remark below:

Remark 2. For 0 < v < π
2 we have x ′(t) �= 0, y ′(t) �= 0 and so we can see the profile curve as

a graph (or union of graphs when γ (t) = (x(t), y(t)) has singularities) of a function y = y(x) or

x = x(y). We will assume without loss of generality, that y = y(x). In this case, equation (2) tells

us that there are singularities at the zeros of the equation

x − y
dy

dx
= 0.

They correspond to the coordinates (u, v) with v = π
2 − u.
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