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ABSTRACT
We use equivariant geometry methods to study and classify zero scalar cur@ajure 1) x
O (p + 1)-invariant hypersurfaces iR?”*2 with p > 1.
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1. INTRODUCTION

The methods of equivariant geometry have been applied successfully by many authors to obtain
and classify explicit examples of hypersurfaces, with a given condition on the r-th mean curvature,

that are invariant by the action of an isometry group (see, for instance, Hgiahdl983, Hsiang
1982, do Carmo & Dajczer 1983, Bombietial. 1969, Alencar 1993).

0. Palmas (Palmas 1999), resuming a work started initially by T. Okayasu (Okayasu 1989) and
using ideas contained in Alencar, 1993, published a work in which he approaches the hypersurfaces

with zero scalar curvature iR%’*2, invariant by the action of the group(p + 1) x O(p +1). In
his article, Palmas studied only the case- 1.

The objective of this work is to announce and give an sketch of proof of a classification theorem

for the casep > 1. Theorbit space of the action is the se&® = {(x, y) € R?; x > 0, y > 0} and
the invariant hypersurfaces are generated by cupnvgs = (x (t), y (¢)), the so callecprofile
curves, that satisfy the following diferential equation

(=x" )y () +x' (1) y" (1)) (y/ 1 x <r)>
' (1))% + (¥ (1)? x(®) oy

1 YO\ (X)) X' ()Y (1)
+-p(p—1) ( + — PP (1)
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In order to study the profile curves of such hypersurfaces we proceeded as in Alencar 1993,
analyzing the trajectories of an associated vector field&Each trajectory (r) = (u(¢), v(¢)) of X
is associated to a familys, of hypersurfaces generated by profile curye@) = (Ax(¢), Ly (1)),
determined by (¢) up to homothety. The profile curvesr) in the orbit space of these hypersufaces
are one of the following types:

A) v () is one of the following half-straight line

y1 (1) = (CoS(a) t, Sin(a) t) Or y,(¢t) = (sin(«) ¢, cOS(a) 1)

wherer > 0 ando = %arccos@;—f‘i) (see figure 1);

B) ¥ (¢) is regular, intersects orthogonally one of the half-axes 0 or y > 0 and asymptotizes

one of the half-straight lines in case A), wher— +o00 orr — —oo (see figure 1);

C) y(¢) is the union of two curveg; : (—oo, 0] — Q andp; : [0, +00) — 2, B1(0) = B2(0)

being a singularity. The curvegs do not intesect the boundary of the orbit space, and asymptotizes
the half-straight lines of the case A, wher— +o0 (see figure 1);

D) y(¢) is regular and does not intersect the boundary of the orbit space and asymptotizes both
half-straight lines of the case A, when— +oo (see figure 1)

y y
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X

Profile curve of type A. Profile curve of type B.

X X

Profile curve of type C. Profile curve of type D.

Fig. 1 — Profile curves.

An. Acad. Bras. Ci., (2000)72 (2)



ZERO SCALAR CURVATURE IN EUCLIDEAN SPACE 111

We will denote byC, andCs_, the cones generated by the half-straight lines of type A.
The main result of this work is the theorem below classifing + 1) x O(p + 1)-invariant
hypersurfaces according to their profile curves.

CLASSIFICATION THEOREM. The O(p + 1) x O(p + 1)-invariant hypersurfaces in R?*2 with

p > 1and zero scalar curvature belong to one of the following classes:

1. coneswith asingularity inthe origin of R?’*2(type A).

2. hypersurfaces that have one orbit of singularities and that are asymptotic to both the cones
Co €Cz_q (typeC).

3. regular hypersurfaces that are asymptotic to the cone C,, (type B).
4. regular hypersurfaces that are asymptotic to the cone Cz _, (type B).

5. regular hypersurfaces that are asymptotic to both cones C,, and Cz _,, (type D).

As a corollary we obtain the following result.

THEOREM A. Let M?P*1bean O(p + 1) x O(p + 1)-invariant hypersurface in R?’+2, complete
and with zero scalar curvature. Then M is generated by a curve of type B or D. Moreover

i) If M isgenerated by a curve of type B, then M is embedded and asymptotic to one of the
cones Cy, Or Cz _y;

i) If M isgenerated by a curve of type D, then M is embedded and asymptotic to both of the
cones C, and Cxq.

The conesC, andCz_,, generated by the half-straight lines in case A are characterized in the
following theorem:

THeorReM B. If M?P*1isan O(p + 1) x O(p + 1)-invariant hypersurface in R?*2, with zero
scalar curvature whose profile curve makes a constant angle with the x-axes then M is one of the
conesCy or Cz_,.

This work is organized as follows. In section 2 we reduce the study of the profile cuéwes
of the invariant hypersurfaces R?’+2, with zero scalar curvature, to the study of the trajectory
o () = (u(t), v(¢)) of a vector fieldX. Then we use the qualitative theory of ordinary differential
equations, together with a geometric analysis of the behaviar, @b obtain a description of its
trajectories.

In section 3, we present sketches of the proofs of the theorems announced above.
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2. ANALYSISOF THEVECTOR FIELD X

The regular curvesx(z), y(¢)) satisfing the equatioS, = 0 are invariant by homotheties and,
therefore, for each solutiop(r) of (1) we have a familyM, of invariant hypersurfaces with zero
scalar curvature, generated by the curve@) = (Ax (¢), Ay (¢)). So we can apply the method
developed in (Bombiert al. 1969) to study the corresponding differential equation. Also note
that, if a curve(x, y) is a solution of equation (1), theiy, x) is also a solution.

Without loss of generality, we may assume that the cup@psare parametrized by arc length.
Therefore, whery = y (x) we obtain

s _ () o ()" +5) + 2] .
: o)

Proceeding as in Bombiest al. 1969 we introduce the parameters

u= arctan(%) andv = arctan(%) )

which are invariant by the homothety, y) — A (x, y) . Assumingu’ # 0, we rewrite equation
(1) as the system

du 1 . .
I = Xi(u,v) = —Zp sin(2u)[sin(2u) — sin(2v)]
Z,—I; = Xo(u,v) = %p[Z (p—1) —cos(2u — 2v) + (2p — 1) cos(2u + 2v)].

We associate to this system the vector figld:, v) = (X1(u, v), X2(u, v)) in the (u, v)-plane.

Since our orbit space is the regié) we need information just for, y > 0, corresponding
to the regionR = {(x,v) ;0 <u < 7, —m < v < 7} in the («, v)-plane .We observe tha is
bounded;-periodic in both variables and invariant by a translatiotf%). So, itis enough to
analyse it in the intervdl, 7] x [0, ].

In order to characterize the phase portrait of the fi€lave make a geometric study of its
behaviour. This study gives us information about the increasing and decreasing intervals of the
coordinates:(¢) andv(¢) of an orbit¢ (r) = (u(z), v(¢)), the types of singularities that presents
and a transversality oX on special curves. This tranversality supplies barriers for the possible
behaviors of those orbits & .

These informations, together with the tubular flow theorem and Poincaré-Bendixson’s theorem
allow us to prove the following proposition, where we use the notation:

R1={u<v<%—u}ﬂ{0<u<%},

R2={O§v<u}ﬂ{05v<%—u,},
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= = < < — < < —=
R3 u<v<uln u ,
R4_— {__u<v<_}[]{u<v<_}

and
RT7T"=R +(—7,0) i=1..,4

ProrosiTION 1. Thetrajectories¢ (1) of X = (X1, X,) aredefined for all valuesof . Intheregion
R={(u,v) € R%0<u <%, —n <v < n} their possible behaviorsis one of the following:

1) ¢ (1) isavertical trajectory with a-limit (0, —%) and w-limit (0, %) , or a vertical trajectory
with a-limit (%, 0) and w-limit (%, ) ,or still avertical trajectory with a-limit (%, —r) and
o-limit (,0) .

2) ¢(1)isavertical half-trajectorywitha-limit (0, —%) , or avertical half-trajectory with w-limit
(0.3)-

3) ¢(r) isatrajectoryin (0, Z) x (0, ) with a-limit (3 — &, Z — ) and w-limit (o, ) going

> 2
through the points of J; = {(u, Z —u);0 <u < %} wherea = %arccos(i;—f’;) .

4) ¢(¢t) is a connection of saddle points contained in the region Rz U R4 with a-limit
(% -, 5 — a) and w-limit (0, %) .
5) ¢(¢) isaconnection of saddle points contained in the region R; U R, with o-limit (O, %) and

w-limit («, o).

6) ¢(t) isaconnection of saddle points contained in the region Ry U R, with a-limit (% O) and
w-limit (o, o).

7) ¢(t) is a connection of saddle points contained in the region Rz U R4 with «-limit
(2 —a, 7 —a) and o-limit (%, 0).

8) ¢(t) isatrajectory contained intheregion Ry U R, U (0, ) x [-%,0]U R;™ U R;™, with
a-limit (—% —a,—% — a) and w-limit (a, «).

2

9) ¢(¢) isanorbit, or part of one, obtained by atranslation of (0, &), of one of the orbts given
intheitens 1-8.

3. 0(p+1) x O(p + 1)-INVARIANT HYPERSURFACES N R27+2

The hypersurfaces of type A (item 1 of the Classification theorem) are given by the Cprees
Cz_, and characterized in Theorem B, whose proof consists in to use that,)it= (x (1), y(1))

=
together with the fact that is parametrized by arc length, give us the result.

is a solution withy(z) = tanax(¢), then it satisfies the equation9 1 + (if) S‘"‘zTZ‘". This,
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Theorem A follows from the Classification theorem, Lemma 1 and Remark 1 below.

LeEmma 1. Let ¢(r) = (u(2),v (1)) be atrajectory with a-limit (5 — o, =% — ) and w-limit
(o, ). Let y (1) = (x (¢), y (¢)) bethe associated profile curve. Then ¢ () intersects the segment
I ={(%,v): —7 <v < %} exactly once, so y (1) intersects the diagonal y = x exactly once.
Therefore, ¢ does not possess self-inter sections and the hypersurface generated by y is embedded

and complete.

REMARK 1. If y isa profile curve associated to a connection of saddle points, then y is a graph
over one of the axes x or y, and intersects it orthoganally. Therefore the hypersurface generated
by y is embedded and complete.

The proof of the Classification theorem is a consequence of the Proposition 1, together with
the remark below:

REMARK 2. For 0 < v < 5 wehave x'(t) # 0, y'(#) # 0 and so we can see the profile curve as
a graph (or union of graphswhen y (r) = (x(¢), y(¢)) has singularities) of a function y = y(x) or
x = x(y). Wewill assume without loss of generality, that y = y(x). Inthis case, equation (2) tells
us that there are singularities at the zeros of the equation

x—ya=0.

They correspond to the coordinates (u, v) withv = 5 — u.
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