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ABSTRACT

In this paper we treat the question of the existence of solutions of boundary value problems for

systems of nonlinear elliptic equations of the form

−�u = f (x, u, v,∇u,∇v), −�v = g(x, u, v,∇u,∇v), in 
,

We discuss several classes of such systems using both variational and topological methods. The

notion of criticality takes into consideration the coupling, which plays important roles in both a

priori estimates for the solutions and Palais-Smale conditions for the associated functional in the

variational case.

Key words: elliptic equations, variational methods, palais-smale conditions, leray-schauder de-

gree, a priori bounds.

1 INTRODUCTION

Systems of nonlinear elliptic equations present some new and interesting phenomena, which are

not present in the study of a single equation. In general, the systems are coupled, or even strongly

coupled, in the dependent variables. So, the notions of superlinearity or sublinearity, and that of

criticality have to take into consideration such a coupling. In this survey we explain how these

notions have been properly defined in the framework of systems. We discuss several types of

systems in an attempt to provide results that apply to large classes of problems. As usual, nonlinear

problems present such a diversity of features that general theories, even if ever possible, are far from

being produced. The classification we propose here is motivated mostly by the methods employed

to solve the problems. Our main concern is on establishing the existence of solutions of boundary

value problems for the systems under consideration. In order to keep the exposition lighter, but

still emphasizing the real essential points, we restrict ourselves to second order systems with two

dependent variables (unknows)u(x) andv(x), that in some places we useu1(x) andu2(x), where
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x ∈ 
. Here
 is some domain inRN , withN ≥ 3. The caseN = 2 is also interesting, but presents

different features, due to the type of Imbedding Theorems in Sobolev Spaces. Indeed, in dimension

N ≥ 3, we use Sobolev and Kondracov Imbedding Theorems, which imerge the Sobolev Spaces

into Lp spaces. On the other hand, in order to treat properly the caseN = 2 we should exploit

the Trudinger-Moser results on imbedding of the corresponding Sobolev spaces into some Orlicz

spaces.

Systems that are Euler-Lagrange equations of some functional are calledVariational. They

can be treated using the Theory of Critical Points, since the solutions of these systems are precisely

the critical points of the functional that originates them. The spaces where the functional is studied

depend on the boundary conditions that the solutions have to satisfy. The method in this case is

usually called the Direct Method of the Calculus of Variations, whose origin remounts to Gauss

and Thompson in the middle 1850’s, and which was used by Dirichlet and also by Riemann to

“solve” the Dirichlet problem for the Laplace equation. However, there were gaps in the proof,

mathematical rigour needed, as pointed out by Weierstrass in the 1870’s. So this procedure had to

wait until the turn of the century, when Hilbert revived the method and put in the right tracks what

was called the Dirichlet Principle. Today the same sort of ideas is used to other boundary value

problems for more general elliptic equations and systems. In the simpler case of Dirichlet problem

for Laplace equation, the critical point is a minimum of the associated functional. The problems

we treat today present a wider variety of critical points. As a consequence, some new Critical

Point Theory had to be developed. Already in the 1930’s, Ljusternik and Schnierelmann developed

a theory of critical points of the min-max type for functionals presenting aZ2 symmetry. In the

1970’s Ambrosetti and Rabinowitz established several results on critical points of the min-max

type for functionals without symmetry.

We restrict to second order elliptic systems whose principal part is given by the differential

operator−�, where� := ∂2

∂x2
1
+ ...+ ∂2

∂x2
N

, and we will discuss systems of the form

−�u = f (x, u, v), −�v = g(x, u, v) in 
, (1.1)

We say that the system above is ofgradient type if there exists a functionF : 
 × R × R → R

of classC1 such that
∂F

∂u
= f, ∂F

∂v
= g.

The above system is said to be ofHamiltonean type if there exists a functionH : 
×R×R → R

of classC1 such that
∂H

∂v
= f, ∂H

∂u
= g.

Using variational methods we discuss Gradient systems in Section 2 and Hamiltonean systems in

Section 3. What to do if the system (1) does not fall in one of those categories? Or if the functions

in the right side of the equations depend also on the gradients

−�u = f (x, u, v,∇u,∇v), −�v = g(x, u, v,∇u,∇v) in 
, (1.2)
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In this case we must recourse to other tools. For the treatment of superlinear problems, the most

adequate one is the Leray-Schauder topological degree. In Section 4, we discuss systems by this

method.

2 GRADIENT SYSTEMS

The theory of gradient systems is sort of similar to that of scalar equations

−�u = f (x, u) in 
, (2.1)

This theory could also be presented in the context of thep-Laplacians,

�pu = div(|∇u|p−2∇u), p > 1.

We consider the system of equations

−�u = Fu(x, u, v), −�v = Fv(x, u, v) (2.2)

subject to Dirichlet boundary condition. The variational method consists in looking for the solutions

of (2.2) as critical points of the functional

�(u, v) = 1

2

∫



|∇u|2 + 1

2

∫



|∇v|2 −
∫



F(x, u, v), (2.3)

whose Euler-Lagrange equations are precisely the weak form of equations (2.2). The functional

(2.3) is to be defined in the Cartesian productE = W
1,2
0 (
) × W 1,2

0 (
). So, due to Sobolev

imbeddings, we require

(F1) F : 
× R × R → R isC1 and
|Fu(x, u, v)| ≤ C(1+ |u|2∗−1 + |v|2∗−1)

|Fv(x, u, v)| ≤ C(1+ |v|2∗−1 + |u|2∗−1).

where 2∗ = 2N
N−2, N ≥ 3, which comes from the continuous imbeddingW 1,2

0 (
) ⊂ L2∗(
).

Condition (F1) implies that� is well defined and a functional of class,C1 in E.

In most variational methods some sort of compactness is required, like a Palais-Smale condition

(for short, PS condition). In this survey we treat only subcritical problems. So we require

(F2) |F(x, u, v)| ≤ C(1+ |u|r + |v|s) ,

where 0< r < 2∗ and 0< s < 2∗. Here a variety of problems have been studied. We single out

three non-critical cases, although many other combinations are of interest:

(I) r, s < 2, ("sublinear"),

(II) r, s > 2, ("superlinear"),

(III) r = s = 2, ("resonant type").
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Systems (2.1) satisfying one of the above conditions, as well as other problems, have been

discussed in Boccardo-deFigueiredo (1997), Boccardo et al. (2000), Vélin & de Thélin (1993). Let

us mention three of those results, in order to show the sort of techniques used in this area.

Theorem 2.1. (The coercive case).Assume (F1) and (F2) with r and s as in (I). Then � achieves

a global minimum at some point (u0, v0) ∈ E, which is then a weak solution of (2.2).

Remark. This result is a consequence of the theorem on the minimization of coercive weakly

lower semicontinuous functionals, which is exactly what is used today to prove the existence of the

minimum of the Dirichlet integral as explained in the Introduction. This is a result from General

Topology:

Auxiliary Theorem n◦1. Let X be a compact topological space. Let� : X → R ∪ +∞ be

a lower semi-continuous function. Then (i)� is bounded below, and (ii) the infimum of� is

achieved, i.e., there existsx0 ∈ X such that infx∈X �(x) = �(x0).

For the proof of Theorem 2.1 we observe that� is weakly lower semicontinuous in the Hilbert

spaceE, so the Auxiliary Theorem n◦1 applies.

Next, if we assume

(F3) F(x,0,0) = Fu(x,0,0) = Fv(x,0,0) = 0, ∀x ∈ 
,

thenu = v = 0 is a solution of (2.2). The next result gives conditions for the existence of non-trivial

solutions.

Theorem 2.2. (The coercive case, non-trivial solutions).Assume (F1), (F3) and (F2) with r and

s as in (I). Then � achieves a global minimum at a point (u0, v0)�=(0,0), provided that there are

positive constants R and � < 1, and a continuous function K : 
× R × R → R such that

(F4) F(x, t
1
2u, t

1
2v) ≥ t�K(x, u, v),

for x ∈ 
, |u|, |v| ≤ R and small t > 0.

Remark. As in Theorem 2.1,� achieves its infimum. All we have to do is to show that there is a

point (u1, v1) ∈ E where�(u1, v1) < 0. Letϕ1 be a first eigenfunction of the Laplacian subject

to Dirichlet data. The functionϕ1 can be taken> 0 in
. So we can useu1, v1 = t 1
2ϕ1, andt > 0

small.

Now let us go to the “superlinear cases". Viewing the need of a Palais-Smale condition we

assume a sort of Ambrosetti-Rabinowitz condition

(F5) 0< F(x, u, v) ≤ θuuFu(x, u, v)+ θvvFv(x, u, v),
for all x ∈ 
 and|u|, |v| ≥ R, whereR is some positive number and

1

2∗
< θu, θv <

1

2
.

Theorem 2.3. Assume (F1), (F3), (F5) and (F2) with r and s as in (II). Assume also that there are

positive constants C and ε, and numbers r, s > 2 such that
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(F6) |F(x, u, v)| ≤ C(|u|r + |v|s),
for |u|, |v| ≤ ε, x ∈ 
. Then � has a non- trivial critical point.

Remark. The proof goes by an application of the Mountain-Pass Theorem, Ambrosetti & Rabi-

nowitz 1973. This is a result from the Theory of Critical Points for functionals that are not bounded

below, and whose critical points appear as saddles. For easy reference let us state this result.

Auxiliary Theorem n◦2. LetX be a Banach space, and� : X → R which is of classC1 and

satisfying the PS condition. Suppose that�(0) = 0, and

(i) There existsρ > 0 and α > 0 such that�(u) ≥ α for all u ∈ Xwith ‖ u ‖= ρ.
(ii) There exists anu1 ∈ X such that‖ u1 ‖> ρ and�(u1) < α.

Then� has a critical pointu0 �= 0, which is at the levelc given by

c := inf
γ∈) max

u∈γ [0,1]�(u),

where) := {γ ∈ C([0,1], X), with γ (0) = 0, γ (1) = u1}.
We recall that� : X → R satisfies the (PS) condition if every sequence(xn) ⊂ X such that

(i) |�(un)| ≤ const , and (ii)�
′
(un)→ 0 contains a convergent subsequence.

The Condition (F6) essentially implies that the origin inE is a local minimum of the functional

�. Condition (F5) implies that the problem is superlinear and so condition (ii) of the Mountain

Pass Theorem is satisfied.

The analysis of the resonant case requires the study of some eigenvalue problem for systems,

and this can be done even for systems involvingp-Laplacians, see Boccardo & DeFigueiredo 1997.

3 HAMILTONEAN SYSTEMS

In this section we study elliptic systems of the form

−�u = Hv(x, u, v), −�v = Hu(x, u, v) in 
, (3.1)

whereH : 
×R×R → R is aC1- function and
 ⊂ R
N,N ≥ 3, is a smooth bounded domain.

One can consider the case when
 = R
N , and in this case, the system takes the form

−�u+ u = Hv(x, u, v), −�v + v = Hu(x, u, v) in 
, (3.2)

In the bounded case, we look for solutions of (3.1) subject to Dirichlet boundary conditions,

u = v = 0 on∂
. This kind of problems has been object of intensive research recently, starting

with the work of Clément et al. 1992, Hulshof & van der Vorst 1993.

In the case when
 = R
N , we will assume some symmetry with respect tox to hold; for

instance, that thex-dependence ofH is radial, or thatH is invariant with respect to certain subgroups
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of O(N) acting onRN , see, for instance, DeFigueiredo & Yang 1998, Bartsch & DeFigueiredo

1999. We have obtained both radial and non-radial solutions in the radial symmetric case, thus

observing a symmetry breaking effect.

One simple case of an elliptic Hamiltonean system appears in Clément et al. 1992, where it

is proved the existence of a positive solution of the system below subject to Dirichlet boundary

conditions:

−�u = f (v), −�v = g(u) in 
. (3.3)

In this case the Hamiltonean isH(u, v) = F(v)+G(u), whereF(t) = ∫ t
0 f (s)ds, and similarly

G is a primitive ofg. However, the treatment given there of system (3.3) was via a Topological

argument, using a theorem of Krasnoselskii on Fixed Point Index for compact mappings in cones

in Banach spaces, see Auxiliary Theorem n◦4. We will come back to that method in section 4.

The model of a superlinear system as in (3.3) is

−�u = |v|p−2v, −�v = |u|q−2u in 
. (3.4)

By analogy with the scalar case one would guess that the subcritical case occurs when 1≤ p −
1, q − 1 < N+2

N−2. However, ifp = 2, system (3.4) is equivalent to the biharmonic equation

�2u = |u|q−2u, and the Dirichlet problem for the system becomes the Navier problem for the

biharmonic, that isu = �u = 0, on∂
. Since the biharmonic is a fourth order operator the critical

exponent is(N + 4)/(N − 4), which is greater than(N + 2)/(N − 2). So this raises the suspicion

(!) that for systems the notion of criticality should carefully take into consideration the fact that

the system is coupled. It appeared in Clément et al. 1992 and independently in Peletier & van der

Vorst 1992 the notion of theCritical Hyperbola, which replaces the notion of the critical exponent

of the scalar case:
1

p
+ 1

q
= 1− 2

N

associated to system (3.3), and in general to systems (3.2) whenHv grows likevp−1 asv→ +∞,

andHu grows likeuq−1 asu→ +∞, and the dependence on the other variables is of some lower

orders.

If the growths ofH with respect tou andv asu, v→ +∞ are both less that(N +2)/(N −2)

one could consider the functional

�(u, v) :=
∫



∇u∇v −
∫



H(x, u, v), (3.5)

which is then well defined inE = H 1
0 (
) × H 1

0 (
). (We use indistinctly the notationsH 1
0 (
)

andW 1,2
0 .) However the possibility of using powers larger than(N + 2)/(N − 2) calls for the use

of fractional Sobolev spaces. They are defined using Fourier expansions on the eigenfunctions of

(−�,H 1
0 (
)); it is well-known that the eigenvalue problem

−�u = λu in 
, u = 0 on ∂
, (3.6)
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has an increasing sequence of eigenvaluesλn, and a corresponding sequence of eigenfunctions

(ϕn), ϕn ∈ H 1
0 (
),

∫ |ϕn|2 = 1, with the properties

(i) λ1 is a positive and simple eigenvalue, andϕ1(x) > 0 for x ∈ 
,

(ii) λn → +∞,

(iii)
∫
ϕiϕj =

∫ ∇ϕi∇ϕj = 0, for i �= j .

It is well known that(ϕn) is an orthonormal system inL2(
) and an orthogonal system in

H 1
0 (
).

Definition. Fors ≥ 0, we define

Es = {u =
∑

anϕn ∈ L2(
) :
∞∑
n=1

λsna
2
n <∞}. (3.7)

Herean =
∫


uϕn. Es is a Hilbert space with the inner-product given by

〈u, v〉Es =
∞∑
n=1

λsnanbn, where v =
∞∑
n=1

bnϕn. (3.8)

Associated with these spaces we have the following maps, which are isometric isomorphisms:

As : Es −→ L2

u = ∑∞
n=1 anϕn �−→ Asu = ∑∞

n=1 λ
s/2
n anϕn

(3.9)

∫
AsuAsv =< u, v >Es . (3.10)

The Sobolev imbedding theorem says that “Es ⊂ Lp continuously if 1
p

≥ 1
2 − s

N
, and

compactly if the previous inequality is strict”.

Instead of the functional (3.5), we have to construct one defined in these fractional Sobolev

spaces, which will be chosen depending on the growths of the Hamiltonean. Assume the following

conditions on the Hamiltonean:

(H.1) H : 
× R × R → R isC1 andH ≥ 0.

(H.2) There exist positive constantsp, q andc1 with

1>
1

p
+ 1

q
> 1− 2

N
, p, q > 1, (3.11)

such that

|Hu(x, u, v)| ≤ c1(|u|p−1 + |v| (p−1)q
p + 1) (3.12)

An. Acad. Bras. Ci., (2000)72 (4)



460 DJAIRO G. DEFIGUEIREDO

and

|Hv(x, u, v)| ≤ c1(|v|q−1 + |u| (q−1)p
q + 1) (3.13)

for all (x, u, v) ∈ 
× R × R.

The first inequality in (3.11) expresses a superlinearity of the system, and the second one the

fact that the system is subcritical.

Chooses, t > 0, such thats + t = 2 and

1

p
>

1

2
− s

N
,

1

q
>

1

2
− t

N
.

ThusEs ⊂ Lp(
), and Et ⊂ Lq(
), with compact immersions.

Let nowE = Es × Et . If z = (u, v) ∈ E, thenH(x, u, v) ∈ L1. So the functional below

�(z) =
∫



AsuAtv −
∫



H(x, u, v) (3.14)

is well defined forz = (u, v) ∈ E and it is of classC1. Its derivative is given by the following

expression

〈�′
(z), η〉 =

∫



AsuAtψ + AsφAtv −
∫



Huφ +Hvψ,

whereη = (φ, ψ). So the critical points of the functional� given by (3.14) are the weak solutions

(u, v) ∈ Es × Et of the system
∫



AsφAtv =
∫



Huφ,∀φ ∈ Es (3.15)

∫



AsuAtψ =
∫



Hvψ,∀ψ ∈ Et. (3.16)

Remark. The following regularity theorem was proved in DeFigueiredo & Felmer 1994a:

“these weak solutions(u, v) are indeedu ∈ W 1, p+1
p

0 (
) ∩W 2, p+1
p andv ∈ W 1, q+1

q

0 (
) ∩W 2, q+1
q ,

which we call strong solutions of (3.2)”.

In the same paper the following result was proved:

Theorem 3.1. Assume (H1), (H2) with p, q > 0 satisfying (3.11). In addition, assume

(H3) There exists R > 0 such that

1

p
Hu(x, u, v)u+ 1

q
Hv(x, u, v)v ≥ H(x, u, v) > 0

for all x ∈ 
 and |(u, v)| ≥ R.
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(H4) There exist r > 0 and c > 0 such that

|H(x, u, v)| ≤ c(|u|p + |v|q),

for all x ∈ 
 and |(u, v)| ≤ r .
Then, system (3.2) has a strong solution.

Remarks on the proof of Theorem 3.1. The proof consists in obtaining a critical point of the

functional (3.14). First we observe that� is strongly indefinite. This means that the spaceE

decomposes into the direct sum of two infinite dimensional subspaces, with the property that the

functional is positive definite in one of them and negative definite in the other. In fact, the spaceE

decomposes intoE = E+ ⊕ E−, whereE± are infinite dimensional subspaces and the quadratic

part

Q(z) =
∫



AsuAtv, for z = (u, v)
is positive definite inE+ and negative definite inE−. This fact and (H5) induce a geometry on

the functional� that calls for the use of some linking theorem. For example in DeFigueiredo &

Felmer 1994a we used the Linking Theorem of Benci-Rabinowitz 1979 in a version due to Felmer

1992.

Remark. Condition (H4) in the previous theorem excludes cases whenHu andHv have linear

terms. Indeed, on one hand the superlinearity condition in (3.11) implies thatpq > 1. And on the

other hand, linear terms would imply that (H4) should hold withp = q = 1, which then is not

possible. Let us now treat this case.

Suppose now thatH has a quadratic part, namely1
2cu

2 + 1
2bv

2 + auv. In this case the system

becomes

−�u = au+ bv +Hv , −�v = cu+ av +Hu , (3.17)

whereH satisfies the assumption of the previous theorem. This situation has been studied in special

cases in Hulshof-van der Vorst 1993 and in deFigueiredo-Magalhães 1996. The result we present

below is one of the most general result in this line and it is due to deFigueiredo-Ramos 1998. We

need some extra assumptions on the Hamiltonean, namely.

(H5) There existc1 andc2 such that, for allx, u, v one has

c1(|u|p + |v|q − 1) ≤ H(x, u, v) ≤ c2(|u|p + |v|q + 1).

(H6) lim|u|+|v|→0
H(x,u,v)

|u|2+|v|2 = 0, uniformly in x ∈ 
.
(H7) There existsr > 0 such that one of the conditions below hold

H(x, u, v) ≥ 0, ∀x ∈ 
, ∀|u| + |v| ≤ r, or (3.18)
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H(x, u, v) ≤ 0, ∀x ∈ 
, ∀|u| + |v| ≤ r. (3.19)

Finally, the next condition is a “non-quadraticity” condition at infinite introduced in Costa-

Magalhães (1994, 1996). It is related to the so-called Ambrosetti-Rabinowitz condition and it

is devised to get some sort of Palais-Smale condition for the functionals involved.

(H8) There existsR > 0 such that for anyx ∈ 
 and|u| + |v| ≥ R
1

2
(uHu(x, u, v)+ vHv(x, u, v))−H(x, u, v) ≥ const(|u|p|v|q).

Theorem 3.2. Let a, b, c be real constants. Suppose that H satisfies (H1),(H2), (H5)-(H8). Then

system (3.17) admits a nonzero strong solution.

Remark. In both DeFigueiredo & Felmer 1994a and DeFigueiredo & Ramos 1998 one allows

more general HamiltoneansH . In fact, the growth at∞ can be different from the its behavior at

zero. The proof of both above theorems, 3.1 and 3.2, requires a Linking Theorem for Strongly

Indefinite Functionals. We have used in Theorem 3.2 the following result in Li & Willem 1995.

One could alse use the results in Silva 1988, 1991. Before stating it we give some definitions. We

work in a Hilbert spaceE, which is supposed to decompose into two subspacesE+ andE−, with

E = E+ ⊕ E−. We assume also that there are sequences of subspaces of finite dimensionE±
j ,

such that

E±
1 ⊂ E±

2 ⊂ ... and∪E±
n = E±.

Definition. A C1 functional� : E → R satisfies the(PS)∗-condition if every sequence

(zn) ⊂ En := E+
n ⊕ E−

n such that

|�(zn)| ≤ Const, and|〈∇n�(zn), η〉| ≤ εn ‖ η ‖E, ∀η ∈ En, andεn → 0,

possesses a subsequence converging to a critical point of�.

Definition. A functional� has alocal linking at the origin if for somer > 0 one has

�(z) ≥ 0, for z ∈ E+, ‖ z ‖E≤ r, and

�(z) ≤ 0, for z ∈ E−, ‖ z ‖E≤ r.

Auxiliary Theorem n◦3. [Li & Willem 1995] Let � : E → R be a functional of classC1

satisfying the following conditions:

(B1)� has a local linking at the origin,

(B2)� satisfies the(PS)∗-condition,

(B3)� maps bounded sets into bounded sets,

(B4) ∀n ∈ N, �(z)→ −∞ as‖ z ‖→ ∞, z ∈ E+
n ⊕ E−.

Then� has a nontrivial critical point.
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4 NONVARIATIONAL SYSTEMS

In this section we propose to treat system (1.1) of the Introduction, in the case that it is not

variational. For that matter, we have to recourse to other methods in order to prove the existence

of solutions. It seems that the only available technique to treat such systems with nonlinearities

f (x, u, v) andg(x, u, v) behaving eventually as powers ofu, v at∞ is topological; explicitely,

the Topological Degree of Leray-Schauder. Let us then set to solve the problem on the existence

of positive solutions of the Dirichlet problem for system (1.1). We assume

(NV1) f, g : 
× R
+ × R

+ → R
+ areC1, f (x,0,0) = g(x,0,0) = 0.

We shall work here with the Banach spaceC0
0(
) endowed with the norm of the maximum. Our

notation is

C0
0(
) = {u : 
→ R, continuous andu = 0 on ∂
}.

LetE := C0
0(
)× C0

0(
), andK := {(u, v) ∈ E : u ≥ 0, v ≥ 0}.
Condition (NV1) implies that, ifu, v ∈ C0

0(
), andu, v ≥ 0, then the system

−�û = f (x, u, v), −�v̂ = g(x, u, v) in 
, (4.1)

has apositive solution in the spaceC1(
) ∩ C0
0(
). These assertions come from the maximum

principle and the theory of solvability of elliptic equations; the solutionsû, v̂ are not classical,

but what matters is that the weak solvability of (4.1) defines a mappingT : K → K as follows

T (u, v) = (û, v̂). So a fixed point ofT is a solution of system (1.1). In this way, one obtains a

weak solution inC1(
) ∩C0
0(
), and after, by the regularity theory the solution is in fact inC2,α.

The operatorT is compact, in view of the compact imbedding ofC0
0(
) intoC1(
) ∩ C0

0(
). So

we can use topological degree through and Index Point Theorem, cf Amann 1976, Benjamin 1971.

Theorem 4.1. Auxiliary Theorem n◦4. [Krasnosel’skii 1964].Let C be a cone in Banach space

X and T : C → C a compact map such that T (0) = 0. Suppose that there exists 0 < r < R,

t > 0 such that

(i) x �= tT x for 0 ≤ t ≤ 1, x ∈ C, ‖ x ‖= r,
(ii) ∃ compact map H : BR × [0,∞)→ C such that

(a) H(x,0) = T x for ‖ x ‖= R,

(b) H(x, t) �= x for ‖ x ‖= R and t ≥ 0,

(c) H(x, t) = x has no solution x ∈ BR for t ≥ t0.

Then iC(T , Br) = 1, iC(T , BR) = 0, iC(T , U) = −1, where U = {x ∈ C : r <‖ x ‖< R}.
So T has a fixed point in U .

Let us illustrate the use of the Auxiliary Theorem n◦4 to system (1.1) of the Introduction under

some further conditions. So let us assume

(NV2) f (x, u, v) = o(|u| + |v|), g(x, u, v) = o(|u| + |v|), as |u| + |v| → 0,
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uniformly in x ∈ 
.

(NV3) There are positive real numbersµ1, µ2 and a constantC > 0 such thatµ1µ2 > λ
2
1, and

f (x, u, v) ≥ µ1u− C, uniformly in x ∈ 
, v ∈ R
+, and

g(x, u, v) ≥ µ2v − C, uniformly in x ∈ 
, u ∈ R
+.

We recall thatλ1 is the first eigenvalue of(−�,H 1
0 (
)).

Theorem 4.2. Assume (NV1),(NV2) and (NV3). And suppose that there is an a priori bound for

all eventual positive solutions of the one-parameter family of Dirichlet problems

−�u = f (x, u+ t, v + t), −�v = g(x, u+ t, v + t) in 
, t ≥ 0. (4.2)

Then system (1.1) has a nonnegative nontrivial solution (u, v).

Condition (NV2) implies that condition (i) in the Auxiliary Theorem n◦4 is satisfied. System

(4.2) enables us to construct the homotopy required in theAuxiliary Theorem n◦4. Condition (NV3)

gives us condition (ii)(c). And of course the assumption that the eventual solutions of system (4.2)

are uniformly bounded with respect to the parameter, gives (ii)(b). So Theorem 4.1 is a simple

application of the Auxiliary Theorem n◦4.

Now the interesting question is under which further assumptions in the functionsf, g the

system (4.2) has its solutions bounded. Here we mean bounded inL∞(
). Such a priori bounds

have been proved by three different methods.

A) In Clément et al. 1992, it was used the Method of Moving Planes (see Berestycki &

Nirenberg 1991) in order to estimate the solutions near the boundary. We remark that condition

(NV3) implies that the projections of the eventual solutions(u, v) over the first eigenspace are

bounded. That is, there is a constantC > 0 such that
∫


uϕ1 ≤ C,

∫


vϕ1 ≤ C. In this way it was

proved (see Clément et al. 1992 for more general results) that the positive solutions of

−�u = f (v), −�v = g(u) in 
, u = v = 0 on∂
, (4.3)

are bounded inL∞(
) provided

1

p + 1
+ 1

q + 1
> 1− 2

N
, (4.4)

wherep > 1 is the growth off at∞, andq > 1 is the growth ofg at∞. So we have considered

subcritical problems. Recall that equality in (4.3) is the critical hyperbola. This method had been

used before in the scalar case to prove a priori bounds of positive solutions of superlinear scalar

equations, DeFigueiredo et al. 1982.

B) In Clément et al. 1996, we used inequalities of the Hardy type to prove the a priori

bounds.This method had been used before in Brézis & Turner 1977. It is based in an inequality
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of Hardy, which essentially says the following: any functionu ∈ H 1
0 (
) has a vanishing at

the boundary∂
 of an order related to the order of vanishing of the first eigenfunctionϕ1 of

(−�,H 1
0 (
)), in the sense thatu/ϕ1 is anL2(
)-function. More precisely the Hardy inequality

says: there is a constantC > 0 such that

‖ u
ϕ1

‖L2≤ C ‖ ∇u ‖L2, ∀ u ∈ H 1
0 .

As in the previous method, the Hardy inequality essentially helps to estimatingu, v near the

boundary∂
. In order to state the result in Clément et al 1996 we need two further conditions

(NV4) There existq ≥ 1 andσ ′ ≥ 0 such that|f (x, u, v)| ≤ C(|u|q + |v|qσ ′ + 1) uniformly

in x ∈ 
.

(NV5) There existp ≥ 1 andσ ≥ 0 such that|g(x, u, v)| ≤ C(|v|p + |u|pσ + 1) uniformly

in x ∈ 
.

Theorem 4.3. Let N ≥ 4. Assume conditions (NV1), (NV3), (NV4) and (NV5) with p, q, σ and

σ ′ satisfying

1

p + 1
+ N − 1

N + 1

1

q + 1
>
N − 1

N + 1
(4.5)

1

p + 1

N − 1

N + 1
+ 1

q + 1
>
N − 1

N + 1
(4.6)

and

σ = L

max(L,K)′
σ ′ = K

max(L,K)

where

K = p

p + 1
− 2

N
> 0 and L = q

q + 1
− 2

N
> 0.

Let (u, v) be a positive solution of (1.1). Then there exists a constant C > 0 such that ‖ u ‖L∞≤ C
and ‖ v ‖L∞≤ C.

Remark. Observe that the conditions onp andq described in inequalities (4.5)-(4.6) express the

fact that these parameters are below two hyperbolas in the plane(p, q). These two hyperbolas are

below the critical hyperbola, which indicates that this result is not the best possible. However, it

is what can be expected by this method since, the intersection of those two hyperbolas is precisely

the Brézis-Turner exponent:N+1
N−1.

C) The last technique is the so-called Blow-up Method. This technique seems to have been

introduced in Gidas and Spruck in 1981a to obtain a priori bounds for positive solutions of scalar

equations whose nonlinearities behave like powers at+∞. The method was first used in the case of

systems in Souto 1992, 1995, and he was able to treat some special systems. In Montenegro 1997,
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it were treated more general systems, including even systems with more than two equations. We

now present some results essentially due to him in a form given in the survey paper DeFigueiredo

1998. For that matter, viewing some symmetry present in the conditions, we write the system in

the following form,


−�u1 = a(x)uα11

1 + b(x)uα12
2 + h1(x, u1, u2)

−�u2 = c(x)uα21
1 + d(x)uα22

2 + h2(x, u1, u2)
(4.7)

The functions and parameters involved in the above system satisfy the following set of condi-

tions:

(A1) The coefficientsa, b, c, d : 
→ [0,∞) are continuous functions.

(A2) The exponentsαij ≥ 0 i, j = 1,2.

(A3) There exist positive constantsc1 andc2 such that

|h1(x, u1, u2)| ≤ c1(1+ |u1|β11 + |u2|β12)

|h2(x, u1, u2)| ≤ c2(1+ |u1|β21 + |u2|β22)

where

0 ≤ βij < αij i, j = 1,2.

The blow-up method goes by a contradiction argument. One supposes that there is noL∞ a

priori bound and after a procedure of “blowing” the independent variable, see DeFigueiredo 1998,

one obtains statements on the existence of solutions of certain systems in the whole ofR
N or in

halfspaces of the same. Such results are known as Liouville theorems. Gidas-Spruck (1991b)

studied the scalar case−�u = f (u), wheref (u) ∼ up asu → +∞, for somep > 1. The

blow-up yielded to the assertion that the following problem has a solution:

−�u = up in R
N, u ≥ 0, u �≡ 0, u ∈ C2. (4.8)

Problem (4.7) does not have a solution if 0< p < (N + 2)/(N − 2). As it is well known,

problem (4.7) has a solution forp = (N + 2)/(N − 2), a whole 2-parameter family of solutions,

the so-called instantons. So an a priori bound for the positive solutions of the superlinear problem

holds if 0< p < (N + 2)/(N − 2).

The blow-up method used to the system (4.6) yields to similar statements, Liouville theorems

for systems. Depending on some relations on the exponents we come to different systems in the

whole of RN . We single out two classes of systems: (i) weakly coupled, (ii) strongly coupled,

whose definitions we give next.

Definition 1. System (4.5) isweakly coupled if there are positive numbersβ1, β2 such that

β1 + 2− β1α11 = 0, β1 + 2− β2α12 > 0

β2 + 2− β1α21 > 0, β2 + 2− β2α22 = 0
(4.9)
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Definition 2. System (4.5) isstrongly coupled if there are positive numbersβ1, β2 such that

β1 + 2− β1α11 > 0, β1 + 2− β2α12 = 0

β2 + 2− β1α21 = 0, β2 + 2− β2α22 > 0
(4.10)

This terminology comes from the fact that the limiting equations in the case of a weakly coupled

system is decoupled. Namely, assuming thata(x0) andd(x0) are positive, it follows after the

blow-up and a scaling that there are functionsw1 andw2 of classC2 defined in the whole ofRN

with w1 ≥ 0, w1 �≡ 0,w2 ≥ 0 satisfying

−�w1 = wα11
1

−�w2 = wα22
2 , in R

N.

If the maximum of the eventual solutions migrate to the boundary, one obtains a similar statement

in a halfspace. So in the case of a weakly coupled system, a priori bounds exist if 0< α11, α22 <

(N + 2)/(N − 2).

In the case of a strongly coupled system the limiting systems are

−�w1 = wα12
2 , −�w2 = wα21

1 in R
N,w1, w2 ≥ 0, �≡ 0 (4.11)

or

−�w1 = wα12
2 , −�w2 = wα21

1 in (RN)+, w1, w2 ≥ 0, �≡ 0 (4.12)

with

w1(x
′,0) = w2(x

′,0) = 0

So one obtains the a priori bounds if the above systems do not have a solution as especified. One

expects that this would be the case ifp, q are below the critical hyperbola. However this is not yet

proved in this generality. There are partial results of Souto 1992, 1995, DeFigueiredo & Felmer

1994b, several results of Serrin & Zou 1994, 1996, 1997. Some more details can be seen in

DeFigueiredo 1998.
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