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ABSTRACT
In this paper we treat the question of the existence of solutions of boundary value problems for
systems of nonlinear elliptic equations of the form

—Au = f(x,u,v,Vu, Vv), —Av = g(x,u, v, Vu, Vv), in Q,

We discuss several classes of such systems using both variational and topological methods. The
notion of criticality takes into consideration the coupling, which plays important roles in both a
priori estimates for the solutions and Palais-Smale conditions for the associated functional in the
variational case.

Key words: elliptic equations, variational methods, palais-smale conditions, leray-schauder de-
gree, a priori bounds.

1 INTRODUCTION

Systems of nonlinear elliptic equations present some new and interesting phenomena, which are
not present in the study of a single equation. In general, the systems are coupled, or even strongly
coupled, in the dependent variables. So, the notions of superlinearity or sublinearity, and that of
criticality have to take into consideration such a coupling. In this survey we explain how these
notions have been properly defined in the framework of systems. We discuss several types of
systems in an attempt to provide results that apply to large classes of problems. As usual, nonlineat
problems present such a diversity of features that general theories, even if ever possible, are far from
being produced. The classification we propose here is motivated mostly by the methods employed
to solve the problems. Our main concern is on establishing the existence of solutions of boundary
value problems for the systems under consideration. In order to keep the exposition lighter, but
still emphasizing the real essential points, we restrict ourselves to second order systems with two
dependent variables (unknows)x) andv(x), that in some places we uge(x) and u»(x), where
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x € Q. HereQ is some domainiiRY, with N > 3. The cas&/ = 2 is also interesting, but presents
different features, due to the type of Imbedding Theorems in Sobolev Spaces. Indeed, in dimension
N > 3, we use Sobolev and Kondracov Imbedding Theorems, which imerge the Sobolev Spaces
into L? spaces. On the other hand, in order to treat properly the Ease2 we should exploit
the Trudinger-Moser results on imbedding of the corresponding Sobolev spaces into some Orlicz
spaces.

Systems that are Euler-Lagrange equations of some functional are \éallational. They
can be treated using the Theory of Critical Points, since the solutions of these systems are precisely
the critical points of the functional that originates them. The spaces where the functional is studied
depend on the boundary conditions that the solutions have to satisfy. The method in this case is
usually called the Direct Method of the Calculus of Variations, whose origin remounts to Gauss
and Thompson in the middle 1850’s, and which was used by Dirichlet and also by Riemann to
“solve” the Dirichlet problem for the Laplace equation. However, there were gaps in the proof,
mathematical rigour needed, as pointed out by Weierstrass in the 1870’s. So this procedure had to
wait until the turn of the century, when Hilbert revived the method and put in the right tracks what
was called the Dirichlet Principle. Today the same sort of ideas is used to other boundary value
problems for more general elliptic equations and systems. In the simpler case of Dirichlet problem
for Laplace equation, the critical point is a minimum of the associated functional. The problems
we treat today present a wider variety of critical points. As a consequence, some new Critical
Point Theory had to be developed. Already in the 1930's, Ljusternik and Schnierelmann developed
a theory of critical points of the min-max type for functionals presentitfy aymmetry. In the
1970’'s Ambrosetti and Rabinowitz established several results on critical points of the min-max
type for functionals without symmetry.

We restrict to second order elliptic systems whose principal part is given by the differential
operator—A, where A := %Zf + ...+ 25, and we will discuss systems of the form

0,2 1
axy,

—Au= f(x,u,v), —Av=g(x,u,v)in Q, (1.1)

We say that the system above isgpdient type if there exists a functioF : @ x R x R — R
of classC? such that

oF oF

w -l T
The above system is said to beHtdimiltonean typeif there exists a functiodl : Q x Rx R — R

of classC? such that
0H _, oH

ol
Using variational methods we discuss Gradient systems in Section 2 and Hamiltonean systems in
Section 3. What to do if the system (1) does not fall in one of those categories? Or if the functions
in the right side of the equations depend also on the gradients

—Au = f(x,u,v,Vu, Vv), —Av = g(x,u, v, Vu, Vo) in Q, 1.2)
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In this case we must recourse to other tools. For the treatment of superlinear problems, the most
adequate one is the Leray-Schauder topological degree. In Section 4, we discuss systems by thi:
method.

2 GRADIENT SYSTEMS

The theory of gradient systems is sort of similar to that of scalar equations
—Au = f(x,u)in Q, (2.2)
This theory could also be presented in the context ofpttieaplacians,
Apu = div(|Vul""*Vu), p> 1
We consider the system of equations
—Au=F,(x,u,v), —Av=F,(x,u,v) (2.2)

subjectto Dirichlet boundary condition. The variational method consists in looking for the solutions
of (2.2) as critical points of the functional

1 1
CD(u,v):E/ |Vu|2+§/ |Vv|2—/ F(x,u,v), (2.3)
Q Q Q

whose Euler-Lagrange equations are precisely the weak form of equations (2.2). The functional
(2.3) is to be defined in the Cartesian prodiict= Wy?(2) x Wx?(R). So, due to Sobolev
imbeddings, we require
(F1) F:QxRxR— Risctand
|Fu(x,u,v)] < C(A+ >4 [vZ Y
|Fy(x, u,0)] < CQAA+ [P+ [ufP 7).
where 2 = % N > 3, which comes from the continuous imbeddiﬂgl’z(fz) c LZ(Q).
Condition (F1) implies tha® is well defined and a functional of clags! in E.
In most variational methods some sort of compactness is required, like a Palais-Smale condition
(for short, PS condition). In this survey we treat only subcritical problems. So we require
(F2) |F(x,u,v)] < CA+|ul"+|v*) ,
where O< r < 2*and O< s < 2*. Here a variety of problems have been studied. We single out
three non-critical cases, although many other combinations are of interest:

() r,s < 2,("sublinear"),
(I r,s > 2,("superlinear"),

(my r =s = 2,("resonant type").

An. Acad. Bras. Ci., (2000)72 (4)



456 DJAIRO G. DEFIGUEIREDO

Systems (2.1) satisfying one of the above conditions, as well as other problems, have been
discussed in Boccardo-deFigueiredo (1997), Boccardo et al. (2000), VElin & de Thélin (1993). Let
us mention three of those results, in order to show the sort of techniques used in this area.

THEOREM 2.1. (The coercive casepssume (F1) and (F2) with » and s asin (1). Then ® achieves
a global minimum at some point (g, vo) € E, which isthen a weak solution of (2.2).

ReEMARK. This result is a consequence of the theorem on the minimization of coercive weakly
lower semicontinuous functionals, which is exactly what is used today to prove the existence of the
minimum of the Dirichlet integral as explained in the Introduction. This is a result from General
Topology:

AuxiLiarRy THEOREM N°1. Let X be a compact topological space. l&t: X — R U 400 be
a lower semi-continuous function. Then () is bounded below, and (ii) the infimum df is
achieved, i.e., there existg € X such that infcxy ®(x) = ®(xg).

For the proof of Theorem 2.1 we observe ttheis weakly lower semicontinuous in the Hilbert
spaceE, so the Auxiliary Theoremdi applies.

Next, if we assume

(F3) F(x,0,0) = F,(x,0,0) = F,(x,0,0) =0, Vx € Q,
thenu = v = Oisasolution of (2.2). The next result gives conditions for the existence of non-trivial
solutions.

THEOREM 2.2. (The coercive case, non-trivial solutiongssume (F1), (F3) and (F2) with » and
s asin (l). Then & achieves a global minimum at a point (g, vo)#(0, 0), provided that there are
positive constants R and ® < 1, and a continuous function K : @ x R x R — R such that

(F4) F(x,t%u,t%v) > 9K (x, u,v),
for x € @, |ul, |[v] < R and small > O.

REMARK. As in Theorem 2.1¢ achieves its infimum. All we have to do is to show that there is a
point (u1, v1) € E where®(uy, v1) < 0. Lety; be a first eigenfunction of the Laplacian subject
to Dirichlet data. The functiop, can be taken- 0 in Q. So we can usgq, v1 = t%(pl, andr > 0
small.

Now let us go to the “superlinear cases". Viewing the need of a Palais-Smale condition we
assume a sort of Ambrosetti-Rabinowitz condition

(F5) O< F(x,u,v) <6,uF,(x,u,v) +0,vF,(x,u,v),
forall x € Q and|u|, |v| > R, whereR is some positive number and

e euv Qv A
2 = =2

THEOREM 2.3. Assume (F1), (F3), (F5) and (F2) withr and s asin (I1). Assume also that there are
positive constants C and ¢, and numbers7, s > 2 such that
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(F6) |F(x,u,v)| < C(lul" + [v]*),
for |ul, |v| < e, x € Q. Then ® hasa non- trivial critical point.
ReEMARK. The proof goes by an application of the Mountain-Pass Theorem, Ambrosetti & Rabi-

nowitz 1973. Thisis a result from the Theory of Critical Points for functionals that are not bounded
below, and whose critical points appear as saddles. For easy reference let us state this result.

AuxILIARY THEOREM N°2. LetX be a Banach space, add: X — R which is of classC! and
satisfying the PS condition. Suppose tlgD) = 0, and

(i) There existo > 0 and « > 0 such thatb(u) > « forallu € Xwith || u ||= p.

(i) There exists am; € X such that] uy ||> p and® (uy) < «.
Then® has a critical pointg # 0, which is at the levet given by

c:=inf max o),
yel uey[0,1]

wherel® := {y € C([0, 1], X), with y(0) =0, y(1) = u1}.

We recall thatd : X — R satisfies the (PS) condition if every sequege C X such that
(i) | (un)| < const, and (i) ® (u,) — O contains a convergent subsequence.

The Condition (F6) essentially implies that the origirfiris a local minimum of the functional
®. Condition (F5) implies that the problem is superlinear and so condition (ii) of the Mountain
Pass Theorem is satisfied.

The analysis of the resonant case requires the study of some eigenvalue problem for systems
and this can be done even for systems involyinlgaplacians, see Boccardo & DeFigueiredo 1997.

3 HAMILTONEAN SYSTEMS

In this section we study elliptic systems of the form
—Au = H,(x,u,v), —Av=H,(x,u,v)ing, (3.1

whereH : Q@ x R x R — Ris aC?- function and2 c RV, N > 3, is a smooth bounded domain.
One can consider the case when= R”", and in this case, the system takes the form

—Au+u=H,(x,u,v), —Av+v=H,(x,u,v)inQ, (3.2)

In the bounded case, we look for solutions of (3.1) subject to Dirichlet boundary conditions,
u = v = 00nadQ. This kind of problems has been object of intensive research recently, starting
with the work of Clément et al. 1992, Hulshof & van der Vorst 1993.

In the case whe = R", we will assume some symmetry with respectctto hold; for
instance, thatthe-dependence df isradial, orthafd is invariant with respectto certain subgroups
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of O(N) acting onR", see, for instance, DeFigueiredo & Yang 1998, Bartsch & DeFigueiredo
1999. We have obtained both radial and non-radial solutions in the radial symmetric case, thus
observing a symmetry breaking effect.

One simple case of an elliptic Hamiltonean system appears in Clément et al. 1992, where it
is proved the existence of a positive solution of the system below subject to Dirichlet boundary
conditions:

—Au = f(v), —Av=gu)inQ. (3.3)

In this case the Hamiltonean i(u, v) = F(v) + G(u), whereF (t) = fé f(s)ds, and similarly

G is a primitive ofg. However, the treatment given there of system (3.3) was via a Topological
argument, using a theorem of Krasnoselskii on Fixed Point Index for compact mappings in cones
in Banach spaces, see Auxiliary Theoretd.nWe will come back to that method in section 4.

The model of a superlinear system as in (3.3) is

—Au=v[P"%, —Av=u""uinQ. (3.4)
By analogy with the scalar case one would guess that the subcritical case occurs when-1
19g—-1< %—fg However, if p = 2, system (3.4) is equivalent to the biharmonic equation

A?u = |u|?"%u, and the Dirichlet problem for the system becomes the Navier problem for the
biharmonic, thatis = Au = 0, 0na2. Since the biharmonic is a fourth order operator the critical
exponentigN + 4)/(N — 4), which is greater thatW + 2) /(N — 2). So this raises the suspicion

(1) that for systems the notion of criticality should carefully take into consideration the fact that
the system is coupled. It appeared in Clément et al. 1992 and independently in Peletier & van der
Vorst 1992 the notion of th€ritical Hyperbola, which replaces the notion of the critical exponent

of the scalar case:
1 1 2

P 4 N
associated to system (3.3), and in general to systems (3.2) Hjhgrows likev’~t asv — 400,
andH, grows likeu?~! asu — +o0, and the dependence on the other variables is of some lower
orders.
If the growths ofH with respect tar andv asu, v — +oo are both less thatv +2) /(N — 2)
one could consider the functional

®(u,v) :=/Vqu—/ H(x,u,v), (3.5)
Q Q

which is then well defined i = H}(Q) x HI(2). (We use indistinctly the notationg}(Q)
andWOLZ.) However the possibility of using powers larger th@h+ 2)/(N — 2) calls for the use

of fractional Sobolev spaces. They are defined using Fourier expansions on the eigenfunctions of
(—A, Hol(Q)); it is well-known that the eigenvalue problem

—Au=u in Q, u=0 on 9J%, (3.6)
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has an increasing sequence of eigenvalygsand a corresponding sequence of eigenfunctions
(@), o € HF(R), [ l¢al? = 1, with the properties

(i) A1 is a positive and simple eigenvalue, andx) > 0 for x € €,

(i) 2, — oo,

It is well known that(gp,) is an orthonormal system ih?(Q2) and an orthogonal system in
1
Hy(S2).

DEeFINITION. Fors > 0, we define

E'={u=Y ayp, € L*(Q): ) ial < oo}. (3.7)

n=1

Herea, = [, ug,. E* is a Hilbert space with the inner-product given by

(U, vV)ps = Zk;anbn, where v = an(pn. (3.8)

n=1 n=1

Associated with these spaces we have the following maps, which are isometric isomorphisms:

A EY — L?

‘ 3.9

U=yl ap, —> Au=)>y 2, AZ/Zan<pn (3.9)

fA‘YuA‘Yv =<U,v >pgs. (3.10)

The Sobolev imbedding theorem says thak® “c L? continuously if% > 11— and

compactly if the previous inequality is strict”.

Instead of the functional (3.5), we have to construct one defined in these fractional Sobolev

spaces, which will be chosen depending on the growths of the Hamiltonean. Assume the following
conditions on the Hamiltonean:

H1) H: QxR xR — RisCt'andH > 0.

(H.2) There exist positive constansg andc; with

1 1 2
1>=4+->1-—, p.qg>1 (3.11)
P q N
such that
1 (p=Dq
|H,(x,u, v)| < ca(ul’"+ ] 7 +1) (3.12)
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and

(q—

74 1) (3.13)

|H,(x, u, v)| < c1([v]f™t + |ul
forall (x,u,v) € 2 x R x R.

The first inequality in (3.11) expresses a superlinearity of the system, and the second one the
fact that the system is subcritical.
Chooses, ¢t > 0, such that +¢ = 2 and

1 1 s 1 1 t
—> -, —> == —.
p 2 N g 2 N
Thuse® C LP(R2), and E' C L7(R2), with compact immersions.
LetnowE = E* x E'. If z = (u, v) € E, thenH (x, u, v) € L. So the functional below

db(z):/AsuA’v—/ H(x,u,v) (3.14)
Q Q

is well defined forz = (4, v) € E and it is of clas<C!. Its derivative is given by the following
expression

(@' (2), ) = / AuAy + ApA'y — / Hy + Hy,
Q Q

wheren = (¢, ¥). So the critical points of the functiondl given by (3.14) are the weak solutions
(u,v) € E° x E'" of the system

/Asqu’v :/ H,$,V¢ € E* (3.15)
Q Q

/QASMA’w =fQHv¢,vw cE'. (3.16)

ReMARK. The following regularity theorem was proved in DeFigueiredo & Felmer 1994a:

p+1 1 q+1

“these weak solution&:, v) are indeed: € W, ” () N W? 7 andv e W, “ (QNW
which we call strong solutions of (3.2)".
In the same paper the following result was proved:

q+1
2, = ,

THEOREM 3.1. Assume (H1), (H2) with p, ¢ > 0 satisfying (3.11). In addition, assume

(H3) Thereexists R > 0 such that

1 1
—H,(x,u,v)u +—H,(x,u,v)v> H(x,u,v) >0
p q

for all x e Q and |(u, v)| > R.
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(H4) Thereexist r > 0 and ¢ > 0 such that
|H (x, u, v)| < c(lul” + [v]?),

for all x € Q and |(u, v)| < r.
Then, system (3.2) has a strong solution.

REMARKS ON THE PROOF OF THEOREM 3.1. The proof consists in obtaining a critical point of the
functional (3.14). First we observe thatis strongly indefinite. This means that the spaée
decomposes into the direct sum of two infinite dimensional subspaces, with the property that the
functional is positive definite in one of them and negative definite in the other. In fact, theBpace
decomposes int& = ET @ E—, whereE* are infinite dimensional subspaces and the quadratic
part

0(2) =/ A*uA'v, for z = (u,v)
Q
is positive definite inE* and negative definite it —. This fact and (H5) induce a geometry on
the functional® that calls for the use of some linking theorem. For example in DeFigueiredo &

Felmer 1994a we used the Linking Theorem of Benci-Rabinowitz 1979 in a version due to Felmer
1992.

REMARk. Condition (H4) in the previous theorem excludes cases wiieand H, have linear
terms. Indeed, on one hand the superlinearity condition in (3.11) impliep4¢hat 1. And on the
other hand, linear terms would imply that (H4) should hold wite= ¢ = 1, which then is not
possible. Let us now treat this case.

Suppose now tha has a quadratic part, name}yu2 + %bv2 + auv. In this case the system
becomes

—Au=au+bv+H,, —Av=cu+av+H,, (3.17)

whereH satisfies the assumption of the previous theorem. This situation has been studied in special
cases in Hulshof-van der Vorst 1993 and in deFigueiredo-Magalh&es 1996. The result we present
below is one of the most general result in this line and it is due to deFigueiredo-Ramos 1998. We

need some extra assumptions on the Hamiltonean, namely.

(H5) There exist; andc; such that, for alk, u, v one has
ci(jul” +|? =1) < H(x,u,v) < c2(Jul” + [v]? +1).
(H6) Iim|,,,+‘v|_>0% = 0, uniformly inx € Q.

(H7) There exists > 0 such that one of the conditions below hold

H(x,u,v) >0, Vx € Q, Yu|+|v| <r, or (3.18)
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H(x,u,v) <0, Vx € Q, Yu|+ [v| <r (3.19)

Finally, the next condition is a “non-quadraticity” condition at infinite introduced in Costa-
Magalhdes (1994, 1996). Itis related to the so-called Ambrosetti-Rabinowitz condition and it
is devised to get some sort of Palais-Smale condition for the functionals involved.

(H8) There exist®R > 0 such that for any € Q and|u| + |v| > R

1
z(uHu(x, u,v) +vH,(x,u,v)) — H(x,u, v) > const|u|’|v|?).

THEOREM 3.2. Let a, b, ¢ bereal constants. Suppose that A satisfies (H1),(H2), (H5)-(H8). Then
system (3.17) admits a nonzero strong solution.

REMARK. In both DeFigueiredo & Felmer 1994a and DeFigueiredo & Ramos 1998 one allows
more general Hamiltonear$. In fact, the growth ato can be different from the its behavior at
zero. The proof of both above theorems, 3.1 and 3.2, requires a Linking Theorem for Strongly
Indefinite Functionals. We have used in Theorem 3.2 the following result in Li & Willem 1995.
One could alse use the results in Silva 1988, 1991. Before stating it we give some definitions. We
work in a Hilbert spacé:, which is supposed to decompose into two subsp&ceand E ~, with
E = ET @ E~. We assume also that there are sequences of subspaces of finite diniéjﬁsion
such that

Ef C Ef C .. andUEF = E*.

DerNITION. A C! functional ® : E — R satisfies the(PS)*-condition if every sequence
(zo) C E, := E} @ E; such that
|®(z,)| < Const, and(V,®(z,), n)| <€, | n llg, Vn € E,, ande, — 0,
possesses a subsequence converging to a critical paint of
DEFINITION. A functional ® has docal linking at the origin if for some > 0 one has
®(z) >0, forze ET,| z||g<r, and

®(z) <0, forze E7, ||z |lg<T.

AUXILIARY THEOREM N°3. [Li & Willem 1995] Let ® : E — R be a functional of clasg*
satisfying the following conditions:

(B1) @ has a local linking at the origin,

(B2) @ satisfies the P S)*-condition,

(B3) ® maps bounded sets into bounded sets,

(B4)VneN, &(z) > —ccas| z||—> o0, z€ESDE".

Then® has a nontrivial critical point.
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4 NONVARIATIONAL SYSTEMS

In this section we propose to treat system (1.1) of the Introduction, in the case that it is not
variational. For that matter, we have to recourse to other methods in order to prove the existence
of solutions. It seems that the only available technique to treat such systems with nonlinearities
f(x,u,v) andg(x, u, v) behaving eventually as powers ofv at oo is topological; explicitely,

the Topological Degree of Leray-Schauder. Let us then set to solve the problem on the existence
of positive solutions of the Dirichlet problem for system (1.1). We assume

(NV1) f,g:QxR"xR" - R" areC?, f(x,0,0)=g(x,0,0)=0.

We shall work here with the Banach spac§(Q2) endowed with the norm of the maximum. Our
notation is
CI(Q) = {u: Q2 — R, continuous andi = 0 on d<2}.

Let E := CJ(Q) x C3(Q), andK := {(u,v) € E:u >0,v > 0}.
Condition (NV1) implies that, if;, v € C3(Q), andu, v > 0, then the system

—Au= f(x,u,v), —AD=g(x,u,v)in, (4.2)

has apositive solution in the spac€(Q) N C3(R). These assertions come from the maximum
principle and the theory of solvability of elliptic equations; the solutiang are not classical,

but what matters is that the weak solvability of (4.1) defines a mapgping — K as follows
T(u,v) = (i, 0). So a fixed point of is a solution of system (1.1). In this way, one obtains a
weak solution inC1(Q) N CJ(Q), and after, by the regularity theory the solution is in facC#f.

The operatofl” is compact, in view of the compact imbedding@(Q) into C1($2) N C3(R). So

we can use topological degree through and Index Point Theorem, cf Amann 1976, Benjamin 1971.

THEOREM 4.1. AUXILIARY THEOREM N°4. [Krasnosel'skii 1964]Let C bea conein Banach space
Xand T : C — C acompact map such that 7(0) = 0. Suppose that there exists0 < r < R,
t > 0 such that

(i) x#tTxfor0<t <1 xeC, | x|=mr

(i) 3 compact map H : By x [0, 0o) — C such that
(@ H(x,0) =Txfor || x |= R,
(b) H(x,t) #xfor || x |= Randt > 0,
(c) H(x, t) = x hasno solution x € By for t > 1.

Then ic(T,B,) =1, ic(T,Bg) =0, ico(T,U)=—1,whereU ={x e C:r <| x|< R}
SO0 T hasafixed pointin U.

Let us illustrate the use of the Auxiliary Theoref#rio system (1.1) of the Introduction under
some further conditions. So let us assume

(NV2) f(x,u,v) = o(lul + [v]),  gCx,u,v) =o(ul +[v]), as |u|l+ [v] =0,

An. Acad. Bras. Ci., (2000)72 (4)



464 DJAIRO G. DEFIGUEIREDO

uniformly inx € Q.
(NV3) There are positive real numbaers, 1» and a constar@ > 0 such thaj,, > A2, and

f(x,u,v) > pw —C, uniformly in x e Q, veR", and

g(x,u,v) > uov —C, uniformly in x € Q, u e RT.
We recall that, is the first eigenvalue af-A, H}(Q)).

THEOREM 4.2. Assume (NV1),(NV2) and (NV3). And suppose that there is an a priori bound for
all eventual positive solutions of the one-parameter family of Dirichlet problems

—Au=f(x,u+t,v+1t), —Av=gkx,u+t,v+r) in Q, t>0. (4.2)

Then system (1.1) has a nonnegative nontrivial solution (u, v).

Condition (NV2) implies that condition (i) in the Auxiliary Theorerdnis satisfied. System
(4.2) enables us to construct the homotopy required in the Auxiliary Thed#n@ondition (NV3)
gives us condition (ii)(c). And of course the assumption that the eventual solutions of system (4.2)
are uniformly bounded with respect to the parameter, gives (ii)(b). So Theorem 4.1 is a simple
application of the Auxiliary Theorem°d.

Now the interesting question is under which further assumptions in the funcfignshe
system (4.2) has its solutions bounded. Here we mean bounde&d (). Such a priori bounds
have been proved by three different methods.

A) In Clément et al. 1992, it was used the Method of Moving Planes (see Berestycki &
Nirenberg 1991) in order to estimate the solutions near the boundary. We remark that condition
(NV3) implies that the projections of the eventual solutignsv) over the first eigenspace are
bounded. That s, there is a constanht- 0 such thatf,, ugy < C, [, ve1 < C. In this way it was
proved (see Clément et al. 1992 for more general results) that the positive solutions of

—Au= f), —-Av=gu)inQ, u=v=00n0, (4.3)

are bounded i.*°(2) provided

1 1 2
—t——>1——, (4.4)
p+1l qg+1 N
wherep > 1 is the growth off atoco, andg > 1 is the growth ofg atoo. So we have considered
subcritical problems. Recall that equality in (4.3) is the critical hyperbola. This method had been
used before in the scalar case to prove a priori bounds of positive solutions of superlinear scalar

equations, DeFigueiredo et al. 1982.

B) In Clément et al. 1996, we used inequalities of the Hardy type to prove the a priori
bounds.This method had been used before in Brézis & Turner 1977. It is based in an inequality
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of Hardy, which essentially says the following: any functiene H}(2) has a vanishing at
the boundaryo2 of an order related to the order of vanishing of the first eigenfunatioof
(—A, H}(RQ)), in the sense that/¢; is anL?(Q)-function. More precisely the Hardy inequality
says: there is a consta@it> 0 such that

u
| = ll2< C || Vi ll2, ¥ u € H.
¢1

As in the previous method, the Hardy inequality essentially helps to estimatingqhear the
boundaryd 2. In order to state the result in Clément et al 1996 we need two further conditions
(NV4) There existy > 1 ando’ > 0 such that f (x, u, v)| < C(|u]? + |v]?°" + 1) uniformly

inx e Q.
(NV5) There existp > 1 ando > 0 such thatg(x, u, v)| < C(|v|? + |u|?° + 1) uniformly
inx e Q.
THEOREM 4.3. Let N > 4. Assume conditions (NV1), (NV3), (NV4) and (NV5) with p, ¢, o and
o' satisfying
1 N—-1 1 N-1
P+l N¥lg+l N+1

(4.5)

1L N-1 1 N-1
>
p+IN+1 g+1 N+1

(4.6)

and
L ) K
o = — o = —
max(L, K)’ max(L, K)

where

Let (u, v) beapositive solution of (1.1). Then thereexistsa constant C > Osuchthat || u || ~< C
and “ v ”Loof C.

REMARK. Observe that the conditions gnandg described in inequalities (4.5)-(4.6) express the

fact that these parameters are below two hyperbolas in the ptage. These two hyperbolas are
below the critical hyperbola, which indicates that this result is not the best possible. However, it
is what can be expected by this method since, the intersection of those two hyperbolas is precisely
the Brézis-Turner exponenf+1.

C) The last technique is the so-called Blow-up Method. This technique seems to have been
introduced in Gidas and Spruck in 1981a to obtain a priori bounds for positive solutions of scalar
equations whose nonlinearities behave like powe#sat The method was first used in the case of
systems in Souto 1992, 1995, and he was able to treat some special systems. In Montenegro 1997
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it were treated more general systems, including even systems with more than two equations. We
now present some results essentially due to him in a form given in the survey paper DeFigueiredo
1998. For that matter, viewing some symmetry present in the conditions, we write the system in
the following form,

—Aug = a(@)ui™ + b(x)uy"? + ha(x, uq, uz) @.7)

—Auy = c(x)u? + dx)uz? + ho(x, ug, up)
The functions and parameters involved in the above system satisfy the following set of condi-
tions:
(A1) The coefficients:, b, ¢, d : Q@ — [0, co) are continuous functions.
(A2) The exponents;; >0 i, j=1,2.
(A3) There exist positive constants andc;, such that

|ha(x, u1, u2)] < e1(1+ |ug]P + |ug|P2)
|ha(x, u1, uz)] < ca(1+ |ug|P2 + |up|P22)

where
O<Bj<ay i,j=L12

The blow-up method goes by a contradiction argument. One supposes that thede™isano
priori bound and after a procedure of “blowing” the independent variable, see DeFigueiredo 1998,
one obtains statements on the existence of solutions of certain systems in the wiRél@woin
halfspaces of the same. Such results are known as Liouville theorems. Gidas-Spruck (1991b)
studied the scalar caseAu = f(u), where f(u) ~ u? asu — +oo, for somep > 1. The
blow-up yielded to the assertion that the following problem has a solution:

—Au=u” in RY, u=>0, u#=0, ueC> (4.8)

Problem (4.7) does not have a solution if0 p < (N + 2)/(N — 2). As it is well known,
problem (4.7) has a solution for = (N + 2)/(N — 2), a whole 2-parameter family of solutions,

the so-called instantons. So an a priori bound for the positive solutions of the superlinear problem
holdsifO< p < (N +2)/(N — 2).

The blow-up method used to the system (4.6) yields to similar statements, Liouville theorems
for systems. Depending on some relations on the exponents we come to different systems in the
whole of RV. We single out two classes of systems: (i) weakly coupled, (ii) strongly coupled,
whose definitions we give next.

DErFINITION 1. System (4.5) isveakly coupled if there are positive numbegs, 8, such that

/31+2—,810l11=0, ,31+2—,320(12>0
B2+2— Praz1 >0, Bo+2— Poazz=0

(4.9)
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DEFINITION 2. System (4.5) istrongly coupled if there are positive numbef, 8, such that

Br1+2—pra11 >0, B1+2—Poajp=0

(4.10)
ﬂ2+2—,31a21=0, ,82+2—,320[22>0

This terminology comes from the fact that the limiting equations in the case of a weakly coupled
system is decoupled. Namely, assuming Wat) andd(xg) are positive, it follows after the
blow-up and a scaling that there are functiamsandw, of classC? defined in the whole oRY

with w1 > 0, wy # 0, w, > 0 satisfying

— o11
— Aw; = w;

— Awp =wy?, in RY.
If the maximum of the eventual solutions migrate to the boundary, one obtains a similar statement
in a halfspace. So in the case of a weakly coupled system, a priori bounds existif 0 o, <

(N +2)/(N —2).
In the case of a strongly coupled system the limiting systems are

—Aw; = ws?, —Awy=wi? in RY w;,w;>0%£0 (4.12)
or
—Awy =wy?, —Awy=wi? in R, wy,w;>0%£0 (4.12)
with
wi(x’,0) = wa(x’,0) =0

So one obtains the a priori bounds if the above systems do not have a solution as especified. One
expects that this would be the casejfy are below the critical hyperbola. However this is not yet
proved in this generality. There are partial results of Souto 1992, 1995, DeFigueiredo & Felmer
1994b, several results of Serrin & Zou 1994, 1996, 1997. Some more details can be seen in
DeFigueiredo 1998.
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