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Abstract: The present study modeled the adsorption process of the drug diclofenac
sodium on activated charcoal. For this purpose, a mass balance-based model was
used considering a fixed bed column. The mass transfer rate in the solid phase was
represented by a driving force model proposed in this study, and a gamma exponent
with a range of 0 > 𝛾 ≤ 2 was assigned to the model. Different isotherms were adopted
to represent the equilibrium at the solid/liquid interface: the Langmuir, Freundlich, Sips
and Redlich-Peterson isotherms. The modeling was approached from the perspective of
Bayesian statistics, and the Markov chain Monte Carlo method was used for parameter
estimation. Model validation was performed with experimental data obtained under
different operating conditions of initial concentration (C0), adsorbent mass (W) and feed
rate (Q). C0 and Q were the ones that most influenced the increase in the amount of
diclofenac adsorbed on the column. Model selection was performed using the Bayesian
information criterion, which indicated that the coupling of the model with the Sips
isotherm had the highest probability of representing the experimental breakthrough
curves. The model was also able to predict different scenarios in which measurement
information was not available.
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INTRODUCTION

Adsorption is a separation process based on the transfer of a certain substance in a fluid to a
solid surface with adsorbent capacity (Ruthven 1984). Due to its advantageous operational simplicity,
effectiveness and cost of implementation (Lv et al. 2021, Tatarchuk et al. 2021, Shamsudin et al. 2021),
adsorption has become one of the most widespread alternatives in the effluent treatment scenario
for the removal of so-called emerging pollutants (Nadour et al. 2019, Lonappan et al. 2019, Dang et al.
2020, Deemter et al. 2020).

This class of emerging contaminants includes various chemical species, such as personal care
products, pesticides, flame retardants, pharmaceuticals and others. However, drugs deserve to be
highlighted since their consumption, whether human or veterinary, has been increasing over the
years (Mirzaee et al. 2021). There is also the aggravating factor of the generation of hospital and
pharmaceutical effluents, which, together with the excretion of part of these substances produced by
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consumer organisms, exposes the environment to interaction with the original molecular structure of
these compounds and their metabolites (Lonappan et al. 2016, Pereira et al. 2017, Haro et al. 2021).

Diclofenac (DCF) stands out in this panorama as a non-steroidal anti-inflammatory drug widely
used in the treatment of pain and inflammation, having reached a worldwide average consumption
of 1443 ± 58 t/year (Acuña et al. 2015) and, in Brazil, it is among the 20 most marketed substances
and associations in the 2019/2020 period (Agência Nacional de Vigilância Sanitária 2021). Even if this
compound is subjected to conventional treatment plants, these do not promote the complete removal
of DCF, making it one of the substances frequently detected in bodies of water (Soares et al. 2019, Zhao
et al. 2021, Avcu et al. 2021, Li et al. 2021).

Studies have shown worrying effects on kidney and immun (Hoeger et al. 2005), as well as
induction of increased mortality rates in crustaceans at concentrations of around mgL−1 (Haap et al.
2008, Lonappan et al. 2016), are some consequences of the constant reinsertion and bioaccumulation
of diclofenac in the environment (Zhang et al. 2021).

One tool that can expand the scope of application of adsorption is mathematical modeling. This
approach makes it possible to predict scenarios even before experiments are performed, in addition
to being essential for project design and scale-up (Vera et al. 2021).

Analytical models in the literature, such as those reported by Yoon-Nelson, Thomas and
Bohart-Adams, are able to profile an adsorption process operating in a continuous system (Ahmed
et al. 2018, Elabadsa et al. 2019, Nunes et al. 2022, Ferreira et al. 2023). Although these models achieve
reasonable fits, detailed information regarding the mass transfer rate in the adsorbent phase is
limited, and the ability to obtain parameter values is dependent on the experimental breakthrough
curve and corresponding operating conditions (Unuabonah et al. 2019, Juela et al. 2021).

In this sense, the aim of this work was to provide a numerical framework for anticipating
breakthrough curve (BC) scenarios that are not yet available experimentally, based on BC information
that is already available. It also proposed a simplifiedmodel with the differential of a gamma exponent
𝛾 (0 > 𝛾 ≤ 2) capable of facilitating not only the adjustment to the data but also possibly the scale-up
stage.

To this end, Bayesian statistics was adopted and the Markov Chain Monte Carlo (MCMC) method
was used to estimate parameters and predict scenarios. Themodeling approachmentioned above and
applied to a system for adsorbing the drug diclofenac onto activated carbon in a fixed-bed column and
using the isotherms of Langmuir, Freundlich, Sips and Redlich-Peterson, to express the equilibrium
between the phases has not yet been published in the literature or even in smaller quantities.

The model was validated using experimental data on the adsorption of diclofenac sodium in a
fixed-bed column filled with activated carbon. The tests were carried out under different operating
conditions of initial concentration C0 (mg L−1), column feed flow rate Q (mlmin−1) and adsorbent mass
in the bed W(g).
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MATERIALS AND METHODS

Reagents

The experimental solutions were prepared by diluting DCF (analytically pure) supplied by
Sigma‒Aldrich (St Louis, MO, USA). Granular activated carbon (size fraction between 2.00 and 2.38 mm)
was supplied by Êxodo Científica (Hortolândia, SP, Brazil). The adsorbent was washed with water to
remove carbon powder and surface impurities, followed by drying at 100 °C for 48 h. The characteristics
of the activated carbon were SBET = 462.96 m2 g−1 and pHPZC = 6.67.

Analytical method

The DCF concentration of all samples was determined by a UV/Vis spectrophotometer (Thermo
Scientific, Genesys 10S UV‒Vis) at a wavelength of 276 nm. The samples were filtered prior to analysis.

Fixed bed column experiments

A glass column with an internal diameter of 1.2 cm and a height of 20 cm was used in the fixed bed
column adsorption experiments. Layers of high-permeability sintered glass were inserted as supports
at the ends of the column. The DCF solution was fed in upflow mode using a peristaltic pump. The
different operating conditions evaluated, including the initial concentration of DCF in solution (C0),
feed rate (Q) , activated carbon mass (W), height (h) and bed volume (VL), are shown in Table I.

Table I. Operational parameters used in the fixed bed column experiments.

Breakthrough curve C0 (mgL−1) Q (mLmin−1) W (g) VL(cm3) h (cm)

1 20.00 3.00 0.50 0.57 0.50

2 100.00 3.00 0.50 0.57 0.5

3 20.00 3.00 1.50 1.70 1.50

4 100.00 3.00 1.50 1.70 1.50

5 20.00 5.00 0.50 0.57 0.50

6 100.00 5.00 0.50 0.57 0.50

7 20.00 5.00 1.50 1.70 1.50

8 100.00 5.00 1.50 1.70 1.50

9 60.00 4.00 1.00 1.13 1.00

Estimation of parameters and predictions

Fig. 1 presents the structure and sequential stages of this study. In the first stage, the relevant model
parameters were estimated with the Markov chain Monte Carlo (MCMC) method; the fit was assessed,
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Figure 1. Structure and sequential stages of the present study.
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and models were selected on the basis of the adjusted coefficient of determination R2a and the
Bayesian information criterion (BIC).

In the second stage, the data from four breakthrough curves were used for the probability
p(Y(case)|Y) grouped according to which operating parameter - C0, Q or W - was kept fixed.

The parameters previously estimated in the first stage p(Pest) were used in the initial distribution
of the second stage. From this information, the model was tested for the prediction of the five
remaining breakthrough curves, whose experimental data were not used in the likelihood. Table II
presents the parameters that were estimated for each model/isotherm coupling and their initial
values.

Table II. Vector of estimated parameters.

Isotherm Estimated parameters

Langmuir P = [ks𝛾kL]

Mass balance model Freundlich P = [ks𝛾kFn]

+ GDF Sips P = [ks𝛾kSips𝛽]

Redlich-Peterson P = [ks𝛾kRPaRPb]

Fig. 2 shows the MCMC method implementation according to the Metropolis-Hastings algorithm
wherein RH refers to the Hastings ratio, used as the accept-reject algorithm. A uniform probability
distribution U[0 10PRef ] was adopted with a minimum value of zero and a maximum value ten times
the reference, PRef . The data obtained in this study were assumed to be normally distributed, and an
experimental uncertainty of 1% was considered acceptable.

Candidate parameters were generated by means of a perturbation around the immediately
previous parameter according to Equation 1.

P∗ = P−1 + Pi−1wrN (1)

where w is the search step, with a value of 0.003. rN represents a random number from the normal
distribution.

The method of lines was applied to solve the general mass balance model, reducing it to a set
of differential equations in time by means of discretization in 𝜂 space (Shakeri & Dehghan 2008),
where the interval 0 < 𝜂 < 1 corresponds to the internal points of the mesh. It is noteworthy that the
experimental measurements were collected at the exit of the column, i.e., when 𝜂 = 1.

To avoid possible interference from different orders of magnitude on the parameter estimation
process (Otálvaro-Marín & Machuca-Martínez 2021, Huang et al. 2022), the dimensionless versions of
Equations 2 and 5-13 were used.

MATHEMATICAL MODELING OF THE ADSORPTION COLUMN

The mathematical model of the fixed bed adsorption column was established from a mass balance.
The simplifying assumptions of the model considered here were as follows: constant axial dispersion
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Figure 2. MCMC method implementation according to the Metropolis‒Hastings algorithm.
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and porosity, mass flow significant only in the axial direction, and the solid/liquid interface as the
condition of thermodynamic equilibrium (Módenes et al. 2021). Such hypotheses are well accepted in
the literature for this type of problem. The balance sheet equation takes the form shown by Equation 2.

𝜕C(z, t)
𝜕t

= 𝜌L
𝜖L

𝜕q(z, t)
𝜕t

+ u0
𝜕C(z, t)

𝜕z
− Dz

𝜕2C(z, t)
𝜕z2

(2)

With 0 < z > L, t > 0.
The term on the left hand-side of Equation 2 represents the rate of change in DCF in the liquid

phase. The first term on the right refers to the rate of change of solute in the adsorbent solid phase, and
the second and third terms on the right correspond to the convective and diffusive effects, respectively.
C and q are the DCF concentrations in the liquid phase (mg L−1) and in the solid phase (mg g−1),
respectively, 𝜖L is the porosity of the bed, is the bed specific gravity (g L−1), Dz is the axial dispersion
(cm2 min−1) and u0 is the interstitial velocity (cm min−1).

Rate equation in the adsorbent phase

The term in Equation 2 that represents the rate of change of solute in the solid phase, 𝜕q(z, t)/𝜕t,
is often represented in the literature by the linear driving force (LDF) model (Equation 3). The LDF
considers an average value (q) for the adsorbate concentration in the solid phase, as shown in Fig.
3, and its difference relative to the equilibrium condition at the interface (q∗) is proportional to the
mass transfer rate in the adsorbent. This kinetic model describes adsorption on the solid surface as a
mechanism of mass transfer and assumes that the particles are a homogeneous phase and that the
reaction kinetics are much faster than the mass transfer steps (Scheufele et al. 2021).

𝜕q(z, t)
𝜕t

= ks(q∗(z, t) − q(z, t)) (3)

With 0 < z > L, t > 0. Where ks (min−1) is the global mass coefficient.
Another approach to describe the rate of change of solute in the solid phase is given by the

quadratic driving force (QDF) model (Equation 4). This model assumes concentration dependence and
considers that the mass transfer coefficient is zero at equilibrium (Brandani 2020). kQDF (mg g−1 min−1)
is the constant of Equation 4.

𝜕q(z, t)
𝜕t

= ks(q∗(z, t) − q(z, t))2 (4)

with 0 < z > L, t > 0.
From Equations 3 and 4, a gamma exponent (0 < 𝛾 ≤ 2) was assigned to the rate equation called

the gamma driving force (GDF) in this work. The value of this exponent can range over an interval
instead of assuming only a fixed value for all cases, with the aim of estimating the best value with
respect to goodness of fit. If 𝛾 = 1, Equation 5 tends to the LDF, and if 𝛾 = 2, it will tend to the QDF. The
GDF equation is shown in Equation 5; kGDF ((mg g−1)1−𝛾 (min−1)) is the constant of this equation.

𝜕q(z, t)
𝜕t

= ks(q∗(z, t) − q(z, t))𝛾 (5)

with 0 < z > L, t > 0.
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Figure 3. Schematic representation of the equilibrium dynamics in the adsorbent phase and the equilibrium
isotherms used.

Equilibrium relationships

The Langmuir, Freundlich, Sips and Redlich-Peterson isotherms were adopted in this study to represent
the equilibrium between the liquid and adsorbent phases. The Langmuir isotherm is represented in
Equation 6 and considers that adsorption occurs in a monolayer without interactions between the
adsorbed molecules.

q∗ =
qmaxkLCeq
1+ kLCeq

(6)

where q* (mg g−1) is the amount of solute adsorbed per gram of adsorbent at equilibrium, qmax (mg
g−1) is the maximum adsorption capacity, kL (Lmg−1) is the Langmuir constant and Ceq (mg L−1) is the
adsorbate concentration at equilibrium.

The Freundlich isotherm, Equation 7, assumes multilayer adsorption, the possibility of interaction
between the adsorbed molecules and solid surface heterogeneity.

q∗ = kFC
1/n
eq (7)

where Ceq (mg L−1) is the solute concentration at equilibrium, kF ((mg g−1)/(L mg−1)1/n)) is the
Freundlich constant, which measures the adsorption capacity, 1/n is related to surface heterogeneity
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and n is a parameter that estimates the intensity of adsorption (Ayawei et al. 2017, Togue Kamga 2019,
Okpara et al. 2021, Martins et al. 2020).

The Sips isotherm, Equation 8, is a combination of the Langmuir and Freundlich isotherms, and
despite setting a maximum limit for adsorption, it allows the use of high values for the adsorbate
concentration. It is used to represent heterogeneous adsorption and, at low concentrations, tends
to the Freundlich isotherm. At higher concentrations, it exhibits monolayer behavior similar to the
Langmuir isotherm (Saadi et al. 2015, Ayawei et al. 2017, Jemutai-Kimosop et al. 2022, Kalam et al.
2021).

q∗ =
qmaxkSipsC

𝛽
eq

1+ kSipsC
𝛽
eq

(8)

where qmax is the maximum adsorption capacity (mg g−1), kSips is the equilibrium constant (L mg−1),
Ceq (mg L−1) is the equilibrium solute concentration and 𝛽 is the heterogeneity of the system and can
range from 0 to 1, where for 𝛽 = 1, the system is considered homogeneous, which is equivalent to the
Langmuir model, and for 𝛽 < 1, it represents increased heterogeneity (Chen et al. 2022).
The Redlich-Peterson isotherm, Equation 9, is also a hybrid between the Langmuir and Freundlich
isotherms. It can be applied over a wide range of concentrations and represents both homogeneous
and heterogeneous systems without following the traditional monolayer representation (Kalam et al.
2021). At low concentrations, this model tends to the Langmuir isotherm, and at higher concentrations,
it tends to the Freundlich isotherm (Wang & Guo 2020).

q∗ =
kRPCeq

1+ aRPCeq
(9)

where kRP (L g−1) and aRP (Lbmg−b) are the parameters of the Redlich-Peterson isotherm and b is the
exponent (0 ≤ b ≤ 1).

The initial conditions used to solve Equation 2 are presented in Equations 10-11.

C(z, 0) = 0 (10)

q(z, 0) = 0 (11)

with 0 < z < L, t = 0.
The boundary conditions used are shown in Equations 12-13.

−Dax
𝜕C(z, t)

𝜕z
= u0(C0 − C(z, t)) (12)

with z = 0 , t > 0.
−𝜕C(z, t)

𝜕z
= 0 (13)

with z = L , t > 0
In Equation 12, the adsorbate feed rate into the column by diffusion and flow is considered to

be constant after it crosses the plane at z = 0, where C0 is the initial adsorbate concentration (mg
L−1). Equation 13 assumes the boundary condition of a constant concentration at the exit of the bed
(Danckwerts 1953).
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The amount adsorbed until the saturation time, qsat , may represent the maximum capacity of a
given adsorbent in a fixed bed column. In this work, Equation 14 was used to obtain the qmax of the
adsorbent for use in the Sips and Langmuir isotherms (Geankoplis 1993).

q∗ = qmax = C0Q
1000W

∫
tf

0
(1− C

C0
)dt (14)

where Q is the volumetric flow rate of the bed (mL min−1) and W is the mass of the adsorbent (g).
Fig. 4 schematically illustrates the adsorption column, the differential elements considered for the

balance and arrangement of the equations as well as the column region that each equation represents.

Figure 4. Schematic representation of the adsorption column and the balance equations in each column region.

Bayesian inference

Bayesian inference allows the use of information available prior to the beginning of the process, which
is included in the a priori probability distribution of the parameters p(P), and the information from
the experimental measurements is included in the probability p(Y|P). The combination of these sets
of information provides the posterior probability distribution p(P|Y).

Bayes’ theorem, shown in Equation 15, presents the formal arrangement of these distributions
(Kaipio & Somersalo 2004); p(Y) is the marginal probability distribution of the measurements serves
only as a normalization constant (Moura et al. 2021, 2022, Amador et al. 2022, Tavares et al. 2022,
Jurado-Davila et al. 2023a, b, Nunes et al. 2021, Viegas et al. 2023, Cardoso et al. 2023).

p(P|Y) = p(P)p(Y|P)
p(Y)

∝ 2023).p(P)p(Y|P) (15)

Sampling methods are generally used to obtain samples from the posterior distribution, one of
which is the MCMC method. This method is widely adopted in the literature and was implemented in
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the present study with the Metropolis‒Hastings algorithm. More details on the general structure of
this method can be found in Gamerman & Lopes (2006) and in the Materials and Methods section
with the adaptations for the present study.

The BIC is used in scenarios involving concurrent models, and the model with the lowest value of
this metric is most likely to represent the studied physical phenomenon (Toffoli de Oliveira et al. 2023).
In this study, the BIC (Equation 16) was applied to select the appropriate model/isotherm coupling for
modeling the adsorption of DCF on a fixed bed of activated carbon.

BIC = −2log[p(Y|P)] + Nplog(Nmed) (16)

where Np represents the number of parameters to be estimated and Nmed represents the number of
measurements used.

RESULTS AND DISCUSSION

Fig. 5 presents the experimental data obtained under different operating conditions, as shown in
Table I, for nine tests of DCF adsorption in a fixed bed column with the commercial adsorbent activated
carbon.

Figure 5. Breakthrough curves obtained under different experimental conditions.
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Table III compares the results of the maximum adsorption capacity qmax found in the literature for
different types of adsorbent materials with the result obtained in the present work for breakthrough
curve 2. The results of the other curves can be consulted in the supplementary material and the qmax
values are in the same order of magnitude.

Table III. qmaxqmaxqmax of the different adsorbents in the literature and breakthrough curve 2.

Adsorbent material qmax Experimental conditions References

Batch adsorption

Biohybrid aerogel 321.3 mg g−1 C0 = 50 – 800 mg L−1 Tang et al. 2023

PH = 5− 10

W = 0.2–1.5 g L−1

Batch adsorption

Thermo-plasma 433.29 mg g−1 C0 = 10–250mgL−1 Cuccarese et al. 2021

expanded graphite W = 10 mg

V = 50 mL

PH = 1

Batch adsorption

Reduced graphene 596.71 mg g−1 C0=325 mg L−1 Hiew et al. 2018

oxide aerogel (rGOA) W = 0.25 g L−1

Batch adsorption

Chitosan/fibrous 142.01 mg g−1 C0 = 60mgL−1 Lai et al. 2023

silica KCC-1 W = 0.15 g L−1

PH = 4

Fixed bed adsorption

Composite of heavy polyethylene 324.34 𝜇g−1 C0 = 500𝜇gL−1 Américo-

sugarcane ash and W = 4 g Pinheiro et al. 2022

terephthalate (PETSCA/Fe3+) Q = 2 mL min−1

Fixed bed adsorption

Activated carbon 14.73 mg g−1 C0 = 100𝜇gL−1 This work

W = 0.5 g

Q = 3 mL min−1

Table III indicates promising results in the development and improvement of adsorbent materials,
as can be seen from their high adsorbent capacities. In the present study, granular activated carbon
was chosen because it is an effective material with satisfactory performance in the treatment of real
water samples (Saarela et al. 2020, da Silva Medeiros et al. 2023), it is ecologically attractive, it has
an affinity with various compounds, it has ample sources of raw materials, it is easy to prepare and it
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is a viable and economically competitive option compared to other adsorbent adsorbents materials
(Kamarudin et al. 2021, Wu et al. 2019, Amalina et al. 2022, Dong et al. 2023).

The data shown in Fig. 5 were fed into the probability calculation for parameter estimation with the
MCMC method. Each experimentally obtained breakthrough curve was evaluated individually with the
mass balance model coupled with the Langmuir, Freundlich, Sips and Redlich-Peterson isotherms. The
results for these individual estimates are presented in Fig. 6 in a dimensionless scenario, considering
a variable DCF concentration at the exit of the column (𝜃) over time (𝜏). The dimensionless groups
adopted here are available in the supplementary material. In general, the breakthrough curves based
on parameter estimation satisfactorily approximated the experimental results.

The estimated curves follow the behavior of the real breakthrough curves, from the region
before the breakthrough point and passing through the entire mass transfer zone until reaching the
equilibrium region. The number of states of the Markov chain (N) adopted here was 10,000, and this
number of states proved to be sufficient to obtain good fits.

The Freundlich model/isotherm combination showed a deviation from the experimental data,
especially in the thermodynamic equilibrium region, for the nine breakthrough curves in Fig. 6. The
estimated mean value for the parameter n, which represents the deviation from linearity, was 1.5,
within a 99% reliability interval, indicating that this is a favorable physical adsorption process because
n > 1 (Pezoti et al. 2016, Kumar et al. 2018). Regarding the Sips isotherm, the mean estimated value
obtained for the 𝛽 parameter was 0.83, within a 99% reliability interval, indicating a system with
increased heterogeneity under the evaluated experimental conditions because 𝛽 < 1.

The breakthrough curve estimated using the Langmuir isotherm presented a coherent fit to the
experimental data, as seen from the adjusted correlation coefficient of 0.99 and the value of the
Bayesian metric BIC (Table IV).

Table IV. Adjusted R2 and BIC values for the nine breakthrough curves, estimated individually with the model
combined with the Langmuir, Freundlich, Sips and Redlich-Peterson isotherms.

Breakthrough
curve

Langmuir Freundlich Sips Redlich-
Peterson

Adjusted R2 BIC Adjusted R2 BIC Adjusted R2 BIC Adjusted
R2

BIC

1 0.99 764.01 0.98 1725.37 0.99 420.58 0.98 1082.93

2 0.99 505.50 0.99 358.50 0.98 488.38 0.99 313.55

3 0.99 818.47 0.98 1717.93 0.99 589.53 0.99 631.58

4 0.99 242.62 0.98 869.31 0.99 309.46 0.99 379.82

5 0.98 469.75 0.98 624.26 0.98 455.18 0.99 294.69

6 0.99 333.65 0.99 233.37 0.98 336.18 0.99 132.04

7 0.99 263.80 0.97 968.52 0.99 240.66 0.99 336.19

8 0.99 282.40 0.99 372.87 0.99 369.59 0.99 199.53

9 0.99 333.55 0.98 440.58 0.98 404.27 0.99 91.49
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Figure 6. Experimental breakthrough curves and those estimated with the model/GDF/isotherm (Langmuir,
Freundlich, Sips or Redlich-Peterson) couplings.
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When considering only the adjusted correlation coefficient, in most cases, the Langmuir isotherm
presented a result closer to unity than did the Sips isotherm. However, the use of the BIC for model
selection enables more thorough analysis of the scenario, as the lower values indicate that the Sips
isotherm has the highest probability of representing the physical phenomenon of DCF adsorption on
activated carbon. This was the case except for curves 4, 6 and 9, in which the lowest BIC value was
obtained for the Langmuir isotherm; it is noteworthy, however, that this difference was small.

The coupling of the Redlich-Peterson isothermwith themechanistic model adopted here provided
a coherent fit to the experimental data, as observed in Fig. 6. The mean value of the parameter b of this
isotherm for the nine breakthrough curves was 0.97 within a 99% confidence interval, demonstrating
that this equation tends to be equivalent to the Langmuir isotherm because b approximates 1 (Chen et
al. 2022). The lowest value of BIC was obtained with this isotherm under the experimental conditions
of breakthrough curve 9, which corresponds to the center point conditions.

Table V presents the initial values used for the parameters and the average estimates obtained
for each parameter. The Peclet number was the only parameter not subjected to estimation due to the
small influence it exerted on the breakthrough curve profile and was kept fixed at Pe = 30. The other
estimated parameters were within a reliability interval of 99% and can be used as a priori information
in further studies on the adsorption of drugs in fixed bed columns.

Table V. Operational parameters used in the fixed bed column experiments.

Reference parameter values

ks kL kF n kSips 𝛽 kRP aRP b Pe

0.05 2.00 100 1.00 2.00 1.00 0.20 1.00 1.00 30.00

Estimated parameter values

ks kL kF n kSips 𝛽 kRP aRP b Pe

0.16 19.64 80.52 1.49 0.17 0.83 0.71 8.27 0.97 30.02

Table VI shows the estimated values for the 𝛾 parameter of the GDF equation within a 99%
confidence interval. In none of the evaluated cases was the value of this parameter restricted to 1
or 2, which leads to the conclusion that a linear model such as the LDF or even a quadratic model
such as the QDF would not be sufficient to represent the kinetics in the adsorbent solid phase.

Thus, this exponent confers greater flexibility, which can result in a better fit to the data due to
the possibility of covering values within an interval consistent with information in the literature.

It is noteworthy that, despite the simplicity of the GDF model, it was effective in describing the
mass transfer rate in the adsorbent solid phase, which indicated its potential as an alternative to the
more complex equations used to describe such dynamics.
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Table VI. Value obtained for the gamma exponent of the GDF equation for the nine experimental breakthrough
curves.

Breakthrough curve
Gamma driving force parameter

Langmuir Freundlich Sips Redlich-Peterson

1 1.99 1.25 1.99 1.93

2 1.52 1.40 1.46 1.51

3 1.99 1.52 1.99 1.98

4 1.64 1.49 1.62 1.62

5 1.78 1.36 1.69 1.89

6 1.31 1.28 1.26 1.53

7 1.86 1.47 1.75 1.74

8 1.61 1.47 1.55 1.44

9 1.46 1.43 1.47 1.61

Breakthrough curve predictions

The mass balance model was evaluated regarding its ability to predict breakthrough curves under
different operating conditions. Table VII shows case 1, in which the initial DCF concentration C0 was
kept constant, and breakthrough curves 1, 3, 5 and 7 were used for probability calculations. With this
information, the model was tested in the prediction of the five remaining breakthrough curves. The
other five cases were evaluated, and their results can be found in the Supplementary Material of this
work.

Table VII. Fixed value of the operating parameter C0 and breakthrough curves used for probability prediction.

Case Fixed operating parameter Breakthrough curves used in
likelihood

C0 20 1 3 5 7

Figs. 7-10 show the predictions obtained with the model coupled to the Langmuir, Freundlich, Sips
and Redlich-Peterson isotherms. The graphs present the estimates for the breakthrough curves whose
data were used for the probability calculations, as well as the predicted profiles for the remaining five
curves.

The model coupled with the Langmuir isotherm, Fig. 7, best represented the breakthrough curves
whose experimental data were not used in the probability calculation. Similar performance was
observed for the model coupled with the Sips isotherm (Fig. 9), in which only case 1 performed better
with the Langmuir isotherm than with the Sips isotherm, as it predicted the data corresponding to
curve nine.
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Figure 7. Predicted breakthrough curves obtained using the Langmuir isotherm coupled to the mass balance model.

Figure 8. Predicted breakthrough curves obtained using the Freundlich isotherm coupled to the mass balance
model.
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Figure 9. Predicted breakthrough curves obtained using the Sips isotherm coupled to the mass balance model.

Figure 10. Predicted breakthrough curves obtained using the Redlich-Peterson isotherm coupled to the mass
balance model.
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For the model coupled with the Freundlich isotherm (Fig. 8), only the predicted breakthrough
curves 1, 2, 5 and 6 reasonably approximated the experimental data. In most cases analyzed with this
isotherm, the predictions were far from the experimental data, as can be seen in the Supplementary
Material of this work. Therefore, the Freundlich isotherm does not provide the best basis for predicting
the scenarios in the present study.

The Redlich-Peterson isotherm (Fig. 10) was also not the most suitable for predicting the
adsorption breakthrough curves of DCF on activated charcoal. Only case 3 (Supplementary Material)
achieved good predictions of breakthrough curves that were not used in the probability calculation.

CONCLUSIONS

The adsorption of the drug diclofenac sodium (DCF) on granulated activated charcoal was studied
experimentally and numerically. A mass balance-based model was used to describe the continuous
phenomenon in a fixed bed column. This problemwas approached using Bayesian statistics so that the
experimental uncertainties could be considered, and the Markov chain Monte Carlo (MCMC) method
was used to estimate the parameters of interest.

The individual estimates of the nine breakthrough curves were in general satisfactory, especially
for the coupling between the model and the Sips isotherm, which came closest to the experimental
data. The Bayesian BIC metric confirmed what was observed graphically, indicating that the coupling
with the Sips isotherm was the most likely to represent the real phenomenon of sodium diclofenac
adsorption on activated carbon.

The different operating conditions C0, W and Q have been shown to influence not only
the experimental performance of adsorption in the fixed bed column, but also the process of
parameter estimation and scenario prediction. This influence had already been observed in a previous
publication by de Franco (2018) who showed that increasing the initial concentration C0 and decreasing
the feed flow rate Q resulted in an increase in the amount of diclofenac adsorbed on the column.

The model and the MCMC method were effective in predicting different scenarios based on
data available from other experimental conditions. This indicates that prediction is an advantageous
application of modeling, since it promotes a reduction in the number of repetitions needed to analyze
the behavior of the phenomenon when only the operating conditions of the system are varied, as well
as contributing to a reduction in costs and time invested in data acquisition.

The GDF model is a simple and effective alternative to more complex models applied for the same
purpose. The possibility of the gamma exponent 𝛾 not being restricted to a fixed value, but varying
within a range, can facilitate not only an adequate fit to the data, but also scaling up.
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Nomenclature

C Adsorbate concentration in the liquid phase (mg L−1)

C0 Initial adsorbate concetration (mg L−1)

Ceq Solute concentration at equilibrium (mg L-1)

q Adsorbate concentration in the solid phase (mg g−1)

u0 Interstitial velocity (cm min−1)

Dz Axial dispersion coefficient (cm2min−1)

kL Langmuir isotherm constant (L mg−1)

kF Freundlich isotherm constant ((mgg−1)/(Lmg−1)1/n)

kSips Sips isotherm constant (L mg−1)

kRP Redlich-Peters on isotherm constant (L mg−1)

b Parameter of the Redlich-Peterson isotherm (0 ≤ b ≤ 1)

a Parameter of the Redlich-Peterson isotherm (Lbmgb)

qmax Maximum column adsorption capacity (mg g−1)

ks Global mass transfer coefficient (min−1)

kQDF Quadratic driving force constant (kg g−1 min−1)

q∗ Equilibrium concentration in the solid phase (mg g−1)

𝜖L Porosity

t Time (min)

𝜌L Bed specific density (gL−1)

𝜃 Dimensionless concentration of adsorbate at the exit of the bed

Pe Péclet number

𝜂 Dimensionless column length

𝜏 Dimensionless time

𝛾 Gamma exponent (adm)
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