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Abstract: Cerrado is the second largest biome in Brazil, and it is responsible for 
providing us several ecosystem services, including the functions of storing Carbon and 
biodiversity conservation. In this study, we developed a modeling approach to predict 
the Aboveground biomass (AGB) in Cerrado vegetation using Artificial Neural Networks 
(ANNs), vegetation indices retrieved from RapidEye satellite imagery, and field data 
acquired within the Federal District territory, Brazil. Correlation testing was performed to 
identify potential vegetation index candidates to be used as input in the AGB modeling. 
Several ANNs were trained to predict the AGB in the study area using vegetation indices 
and field data. The optimum ANN was selected according to criteria of mean error of 
the estimate, correlation coefficient, and graphical analysis. The best performing ANN 
showed a predictive power of 90% and RMSE less than 17%. The validation tests showed 
no significant difference between the observed and ANN-predicted values. We estimated 
an average AGB of 16.55± 8.6 Mg.ha-1 in shrublands in the study area. Our study results 
indicate that vegetation indices and ANNs combined could accurately estimate the AGB 
in the Cerrado vegetation in the study area, showing to be a promising methodological 
approach to be broadly applied throughout the Cerrado biome.

Key words: ANN-MLP, Brazilian savanna, remote sensing, biomass.

INTRODUCTION
The Cerrado comprises the second largest Brazilian biome and the most diverse tropical savanna in 
the world (Klink & Machado 2005). The history of land use and land cover changes in the Cerrado in 
the last decades reveals an intensive anthropogenic pressure on that biome, where the unsustainable 
use of natural resources has been causing several ecosystem disturbances, making it one of the 
most threatened biome in Brazil (Oliveira et al. 2019).  Approximately 50% of native vegetation of the 
Cerrado biome had been cleared by 2022, a total of 99,5 million hectares (Mapbiomas 2024). The land 
demands for expansion of urban centers, mechanized agricultural crops, and pastures are the main 
causes of deforestation in the Cerrado biome (Roquette 2018).

The Cerrado biome presents a crucial role for maintaining the global environmental quality, 
responsible for providing several environmental services, including the ability to store expressive 
amounts of carbon on its biomass (Oliveira et al. 2019).  Biomass measurements have been supporting 
definition of environmental policies by the United Nations Framework Convention on Climate Change 
(UNFCCC), as countries must regularly monitor emissions related to biomass gains and losses. In 
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addition, the biomass data are extremely important at the national level to support the formulation 
of public policies aiming to curb deforestation (Herold et al. 2019). 

The increasing interest in monitoring land cover changes has been widely demanding spatial 
data of vegetation biomass (Yang et al. 2018, Yu & Saatchi 2016). Remote sensing data integrated with 
forest inventories have been broadly applied to estimate aboveground biomass (Barbosa et al. 2014).  
Although vegetation biomass estimates based on field measurements are more accurate, they are 
more time and money consuming and normally unsuitable for large-scale and remote areas (Kumar 
& Mutanga 2017). 

Therefore, there are an increasing demand for developing new methodological approaches to 
estimate biomass at low cost applied to large scale and long-term monitoring study areas (Barbosa 
et al. 2014, Roitman et al. 2018).  In this case, remote sensing can provide substantial and valuable 
amounts of data for extensive areas, with high repeatability and relatively low cost (Meneses et al. 
2019). 

Optical imagery is the most widely used remotely sensed data for natural resources mapping 
due to its global availability and the diversity of orbiting sensors (Mendes et al. 2019). Similarly, 
active systems like Synthetic Aperture Radar (SAR), InSAR (Interferometric Synthetic Aperture Radar), 
and LiDAR (Light Detection and Ranging) have been successfully applied to estimate aboveground 
biomass and forest structure parameters (Hyde et al. 2006, Duncanson et al. 2020, Zolkos et al. 2013). 
However, the most widely used remotely sensed data for biomass estimation are reflectance and 
vegetation indices (Cassol et al. 2014, Ferraz et al. 2014).

The vegetation indices are mathematical combinations of different spectral bands aiming to 
improve the information inherent to the target´s reflectances by extracting the variability caused by 
the vegetation characteristics and minimizing the effects of soil and atmosphere (Viña et al. 2011).  
Moreover, remote sensing data have been used to estimate aboveground biomass through existing 
correlations between the spectral responses of targets and the field-based variables (Herold et al. 
2019, Kumar et al. 2016, Mendes 2019). 

The use of remote sensing data to quantify aboveground biomass can be applied to large spatial 
scale by extrapolating the biomass distribution throughout a surface territory of interest (Cassol 
et al. 2014, Zhu & Liu 2015). Regression analysis is the most common tool of prediction approaches 
when relating satellite data to dendrometric variables (Günlü et al. 2019, Yu 2019). However, in recent 
years, artificial neural networks have been widely used modeling tools since they can provide better 
solution for complex and nonlinear problems using universal estimation attributes (Günlü et al. 2019, 
Panda et al. 2010). 

The ANN does not necessarily assume that the data have normal distribution and linear 
relationships. Thus, they can model different data sources, such as satellite imagery and ground 
measurements, including several independent variables (Günlü et al. 2019). In general, an ANN 
consists of simple processing units, which have natural ability to store experimental knowledge 
and make it available for modeling applications. To achieve superior performance, ANNs employ a 
massive interconnection of computational cells, called “neurons” or processing units (Lorrentz 2015).

The ANN technique includes training, verification, and testing stages using subsets of data which 
are made up of data values randomly selected from the data set (Ercanli et al. 2018). Based on the 
learning process, the ANNs can approximate any nonlinear relationship that exists between a set 
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of input data and its corresponding set of output data (Panda et al. 2010). Some studies have been 
showing effective results in predicting forest parameters by using ANNs and remotely sensed derived 
data (Carrijo et al. 2020, Ercanli et al. 2018, Ferraz et al. 2014, Günlü et al. 2019, Silva et al. 2019). 

In this analysis, we tested and developed a model to estimate the aboveground biomass in 
shrublands in the Cerrado biome, Brazil, using remotely sensed data and ANN combine in study area 
located in the Federal District, Brazil. Our study results showed to be promising approach to provide 
accurate data of aboveground biomass of Cerrado vegetation in Brazil.

MATERIALS AND METHODS
Study area
The study area is spatially located in the Federal District of Brazil (Figure 1), encompassing a total of 
578,919 hectares within the Cerrado biome (Rosa 2016).

The Latosols predominantly occur in the Cerrado biome, covering 46% of its territory, followed 
by the Quartzarenic Neosols, which cover 15% of its extension. In general, deep, well-drained, acidic, 
nutrient-poor, and aluminum-saturated soils predominantly occur in that biome (EMBRAPA 2018).

According to Köppen climate classification, the study area is characterized by the Aw climate type, 
showing a wet season between October and March, and a dry season between April and September 
(Ferreira et al. 2003).  The annual average precipitation is 1,500mm (Silva et al. 2008).

Figure 1. Spatial location of the study area (the Federal District, Brazil)
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The Cerrado sensu stricto, a savanna-like vegetation type, encompasses about 70% of the entire 
Cerrado biome. It is characterized by a herbaceous stratum predominantly featuring native grasses, 
with tree and shrub cover varying between 10% and 60% (Coelho et al. 2020). In 2022, approximately 
24% of the total territory of the Federal District was characterized by Savanna formations, totaling 
141,964 hectares. Forest formations covered 42,227 hectares, while Grassland formations occupied 
41,758 hectares, equivalent to 7.3% and 7.2% of the Federal District territory (Figure 2), respectively 
(Mapbiomas 2024).

Field observed details of the Cerrado vegetation in our study area are shown in Figure 3.

Data collection
The forest inventory was conducted in 2011 by the National Forest Inventory (NFI) team. The NFI is one 
of the main forest survey conducted by the federal government to produce information on Brazilian 
forest resources (Rosa 2016). The NFI data collection was based on systematic sampling plots over a 
national grid of sampling units. Based on this systematic sampling grids, field variables are collected 
throughout the country territory and organized by State (Rosa 2016). A total of 42 sampling plots 
were established within savanna vegetation in the Federal District, selected from 15 conglomerate 
samplings, and field variables were collected (Figure 4). Each sampling plot used in the National 
Forest Inventory (NFI) was a subset of conglomerate samplings, consisting of 4 sub-samples of 0.1 

Figure 2. Land use and land cover in the Federal District territory by 2022. Source: Mapbiomas (2024).
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hectares (20m x 50m) each. Some of the conglomerate sub-samples were excluded as they were not 
situated within savanna vegetation. 

The sampling subunits were divided into another 10 subplots of 10m x10m dimensions. All 
standing trees showing diameters at base height (DB – 30cm from the ground) equal to or greater 
than 10cm were identified, and their DB and total height (Ht) were measured within each sample plot. 
Additionally, a sample plot of 10x10m was set within each conglomerate subsample, where shrubs 
and trees showing diameters between 5 and 10cm were measured.

In addition to data provided by the NFI, a dataset of forest inventory conducted in the Água 
Limpa Experimental Farm (FAL), University of Brasilia, was also used. The FAL dataset was based 
on field data collected in 2005 in 18 permanent plots of 0.1ha (20x50m) spatially located within an 
experimental area of the FAL (Figure 4). Each field plot was divided into 10 subsamples of 10x10m 
where diameter and height of all trees and shrubs were measured for individuals showing DB (base 
diameter at 30cm) equal to or greater than 5cm. In this case, we assume that there were no significant 
changes in vegetation biomass, as no fires or severe climate events had been reported in that study 
site between 2005 and the acquisition date of the remotely sensed data in 2011.

Biomass prediction
Assessment of aboveground biomass requires in situ biomass estimates for calibration and validation 
of biomass prediction algorithms. In this study, we estimated biomass using dendrometric variables 
(basal area and tree heights) based on field measurements. We relied our analysis on the model 
accuracy of the relationship between diameter and height to estimate the aboveground biomass.

Although wood density may influence estimates of aboveground biomass, we did not consider it 
due to potential factors that could affect it. Wood density can vary significantly among different tree 
species, among individuals of the same species, and even within a single tree, depending on factors 

Figure 3. a) close view of Cerrado vegetation (location: 15⁰43’11”S; 47⁰56’02”W) b) panoramic views of Cerrado 
vegetation (location: 15⁰40’35”S; 47⁰53’14”W), both within the Brasília National Park (PNB). Photos taken by Paula 
Lopes Germano Oliveira, April 2021.
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such as age, growth, size, and environmental conditions (Chave et al. 2005, Anderson et al. 2009, 
Henry et al. 2009). This variation poses a significant challenge when using wood density in biomass 
equations, especially in extensive studies involving multiple tree species or environments (Anderson 
et al. 2009, Henry et al. 2009). Additionally, in some cases, wood density may be either unavailable 
or difficult to accurately measure for all samples or species considered in specific study sites. 
Therefore, since in certain biomass analyses, the primary objective may be to discern general trends 
in vegetation growth, biomass production, or forest dynamics on a broader scale, wood density may 
not be as critical for these broader goals.

The basal area (Gi) was obtained according to the equation:

​​G​ i​​ = ∑ ​g​ ji​​​ (x)	 (1)

Where ​​g​ ij​​​ is the sectional area of tree j in plot i (m²), obtained from the equation ​​g = ​(​​π * ​DB​​ 2​​)​​ / 40.000​​
Where π is a constant is a constant equal to 3.14159 and DB (cm) is the diameter at the base of the 
tree (30 cm above the ground).

In this study, the Aboveground Biomass (AGB) was estimated for all individuals showing 
Db ≥ 5cm using an allometric equation adjusted for cerrado sensu stricto vegetation, a 
savanna-like vegetation type (Rezende et al. 2006).

​AGB = 0,4913 + 0,0291 * ​DB​​ 2​ * Ht​	 (2)

​R² = 98,28% e Syx = 25,79%​

Where DB (cm) is the diameter at the base of the tree and Ht is the height in meters.

Figure 4. Sample locations within savanna vegetation in the Federal District territory.
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The final biomass estimate was calculated using the allometric equation (Eq. 02) for each 
individual tree and its specific density value. All individual tree biomasses of each sample plot were 
summed and normalized to estimate the total aboveground biomass (Mg.ha-1) of each sample unit 
of this study. 

Remote Sensing data
RapidEye satellite scenes acquired in September and October 2011 were provided by the Brazilian 
Forest Service, covering the entire study area. We selected this RapidEye imagery because it has been 
widely and successfully used to estimate above-ground biomass (e.g., Gascón et al. 2019, Luz et al. 
2022, Rana et al. 2023, Movchan et al. 2023) and is freely provided by the Brazilian Forest Service in 
Brazil, with images acquired between 2011 and 2014. Additionally, it includes the red-edge spectral 
band, a temporal resolution of 5 days, and a spatial resolution of 5m. The multispectral scanner on 
the RapidEye satellites acquires data in five spectral bands: blue (0.44-0.51 µm), green (0.52-0.59 
µm), red (0.63-0.68 µm), red-edge (0.69-0.73 µm), and near-infrared (0.76-0.85 µm), which are widely 
applied in vegetation assessments (Kross et al. 2015) (Table I).

Vegetation indices
The reflectances of vegetation are related to plant pigments that are responsible for absorbing, 
reflecting, and transmitting incident electromagnetic radiation (Neto 2018). Vegetation indices are 
commonly applied to enhance the reflectance of vegetation by combining certain regions of the 
electromagnetic spectrum (Huete et al. 2002). In this study, vegetation indices were retrieved from 
the RapidEye images at top of atmosphere reflectance using ERDAS IMAGINE® 2011 software (Table II).

The NDVI is noted as one of the pioneer index applied to vegetation studies (Bannari et al. 1995). 
NDVI is highly correlated with vegetation greenness and is the most widely used index in research 
related to vegetation cover dynamics (Ghosh & Behera 2018, Guerini Filho et al. 2019).  The NDRE and 
GNDVI are considered variations of NDVI. The NDRE includes the red edge band to increase sensitivity 

Table I. Acquisition dates and RapidEye Scenes used in this analysis.

RapidEye Scenes Acquisition date

2231727_2011-09-01T142332_RE5_3A-NAC_9878530_139445_0_2 01/09/2011

2231827_2011-06-20T143004_RE3_3A-NAC_9787921_138758_0_11 20/06/2011

2231828_2011-09-01T142328_RE5_3A-NAC_9828364_139008_13 01/09/2011

2331702_2011-09-01T142331_RE5_3A-NAC_9878542_139445_0_8 01/09/2011

2331803_2011-09-20T142153_RE5_3A-NAC_9837818_139076_0_0 20/09/2011

2331903_2011-09-20T142149_RE5_3A-NAC_9837824_139076_0_7
2231927_2011-09-01T142325_RE5_3A-NAC_11809590_154387_0_1
2231928_2011-09-01T142325_RE5_3A-NAC_9879244_139445_4
2331701_2011-09-01T142332_RE5_3A-NAC_9878508_139445_4
2331703_2011-06-22T143244_RE5_3A-NAC_9833172_139013_10

2331704_2011-09-20T142156_RE5_3A-NAC_10911877_148037_0_1
2331802_2011-09-01T142328_RE5_3A-NAC_9878512_139445_0_15
2331804_2011-09-20T142152_RE5_3A-NAC_9837860_139076_0_0
2331902_2011-09-01T142324_RE5_3A-NAC_9878562_139445_0_5
2331904_2011-10-09T141949_RE5_3A-NAC_9789181_138761_0_9

20/09/2011
01/09/2011
01/09/2011
01/09/2011
22/06/2011
20/09/2011
01/09/2011
20/09/2011
01/09/2011
09/10/2011
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to chlorophyll variations (Gitelson & Merzlyak 1996) and the GNDVI includes the green and the near 
infrared bands of the electromagnetic spectrum, which is also sensitive to chlorophyl variation 
in the vegetation and has a higher saturation point than NDVI. CIgreen shows high correlation 
with chlorophyll content and leaf area index and the CIrededge is sensitive to chlorophyll content 
variation using the red edge band (Gitelson et al. 2005). 

The performance assessment of the vegetation indices to predict biomass in our study area 
was conducted based on the correlation matrix analysis between the five calculated indices and the 
biomass measured in the field samples. The correlation matrix analysis was preceded by the Shapiro-
Wilk normality test, which can be used to indicate the correlation method to be subsequently 
applied (parametric or non-parametric). Additionally, the correlation between explanatory variables 
(multicollinearity) was assessed by the Variance Inflation Factor (VIF) test. In this study, the statistical 
analysis was carried out using the software RStudio 1.0.143.

Modeling: Artificial Neural Networks
The stepwise methodological approach of biomass prediction using ANN and vegetation indices 
retrieved from remotely sensed data is presented in Figure 5. The steps are detailed as follows.

A supervised training of 500 neural networks was applied using the Intelligent Problem Solver 
(IPS) tool available on the software package Statistica ver. 7 (Statsoft 2007). The input and the output 
variables were defined in the network through the IPS tool (Carrijo et al. 2020). This tool standardizes 
the data between 0 – 1 and tests several architectures, which allowed us to optimize the ANN 
architecture by defining the best number of neurons in the hidden layer and the best activation 
functions of the hidden and output layers (Binoti et al. 2015, Vale et al. 2017), aiming to achieve 
the lowest error rate of the predictions (Miguel et al. 2018). We used the quasi-Newton algorithm 
developed by Broyden-Flecther-Goldfarb-Shanno (BFGS) in the IPS to process the neural networks 
(Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970), which is the mostly applied quasi-Newton 
method and shows great resolution power for optimization and prediction problems (Guerrout et al. 
2018).

Our trained networks used the Multilayer Perceptron (MLP) architecture in which the input layer 
consisted of the vegetation indices, the hidden layer consisted of “n” neurons, and the output layer 
consisted of one neuron representing the aboveground biomass (Carrijo et al. 2020, Gonçalves et al. 
2021). The MLP architecture is distinguished by the presence of one or more hidden layers, where the 

Table II. Vegetation Indices.

Index Acronym Formula Reference

Normalized Difference Vegetation Index NDVI Rouse et al. (1974)

Normalized Difference Red Edge Index NDRE Fitzgerald et al (2010the canopy chlorophyll 
content index (CCCI)

Green Normalized Difference Index GNDVI Gitelson & Merzlyak (1996)

Red Edge Chlorophyll Index CIrededge Gitelson et al. (2005)

Green Chlorophyll Index CIgreen Gitelson et al. (2005)
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function of the hidden neurons is to combine and improve the input and output network. By adding 
one or more hidden layers, the network will be able of extracting high-order statistics (Lorrentz 2015).

The neuron is the fundamental component of the ANN structure since it is responsible for 
processing data and information by receiving the input values until reaching the desirable results 
in the data output. The functionality of ANN neurons is estimated by combining and reproducing 
information based on connections between n possible inputs (input variables) x1, x2, …, xn and 
the output (output variable) y. For each input a weight w is defined that represents the synapses 
where MLP networks store knowledge, enabling the learning/training process to reach more precise 
estimates and optimal values of the parameter (Carrijo et al. 2020, Gonçalves et al. 2021, Gorunescu 
& Belciug 2016). The artificial neuron is given mathematically, by:

​​​Y​ k​​ = φ ​(​​ ​V​ k​​​)​​​​	 (3)

Where ​​Y​ k​​​ is the output of the artificial neuron; ​φ​ is the activation function; and ​​V​ k​​​ is the combinator 
of the output, given by:

​​V​ k​​ = ∑ ​X​ m​​ ​W​ m​​​	 (4)

In this analysis, we first randomly generated the weights for all networks. Then, each individual 
updated value evolved during the learning process based on the error function (Miguel et al. 2018). 
The network training run until the error rate was reduced to an acceptable range between the 
predicted values and the observed values provided to the network, known as the delta rule, or until 
the maximum number of cycles was reached (Miguel et al. 2018).

Figure 5. Flow diagram for 
biomass prediction using 
ANN (Artificial Neural 
Network) and vegetation 
indices retrieved from 
remotely sensed data in the 
Federal District, Brazil.
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Statistical Analysis
Forty-two of the sixty sample plots (corresponding to 70% of the total samples) were randomly 
selected for training the neural network. The remaining 18 sample plots were excluded from the 
training dataset and later used to validate the modeling results (Zucchini 2000). 

The model performances were statistically analyzed based on the root mean square error in 
percent (RMSE%), the correlation between estimated and observed values (R), and the graphical 
residual analysis (Chen et al. 2019).  These model performance indicators have been used to estimate 
performance of biomass models (Yu et al. 2019). 

​RMSE %  = ​100 _ ​ 
_

 Y ​ ​ * ​√ 
_

 ​∑ ​​(​​ ​Y​ i​​​​̂ ​Y​ i​​​​)​​² _ n  ​ ​​ 	 (5)

Where ​​ 
_

 Y ​​ is the average of the observed AGB; ​​Y​ i​​​ is the observed AGB value in the sample plot i; 
and ​​̂ ​Y​ i​​​​ is the estimated AGB value by the RNA for each sample plot i. In general, an R value closer to 
one and lower RMSE% values indicate a better estimate of model performance (Li et al. 2019).

The ANN showing the best performance results was submitted to a validation process using 
Student’s t-test and, subsequently, an aggregate difference in percentage (DA%) that statically 
indicates underestimation and overestimation errors (Carrijo et al. 2020, Gonçalves et al. 2021, Miguel 
et al. 2015, Vale et al. 2017).  These analyses were conducted using the Microsoft Excel 2016 ® software.

Autocorrelation assessment
To assess autocorrelation in the dataset, we utilize the autocorrelation function (ACF), a statistical 
measure that examines the correlation between a series’ values and its own past values at various 
lags. This test enables us to pinpoint autocorrelation patterns within the data, offering insights into 
its underlying structure. When applied to the residuals of diverse estimation procedures, the test aids 
in diagnosing the presence of autocorrelation in those residuals. Residual autocorrelation occurs 
when a model’s residuals display systematic patterns after the completion of modeling, suggesting 
that the model might not fully capture the data structure (Kemp 2002).

RESULTS
Forest Inventory
We estimated the dendrometric variables based on the data collected in the study area (Table III).

Modelling: selection of independent variables
The Shapiro-Wilk test indicated statistically significantly non-normality in all independent variables 
and, consequently, we applied the non-parametric Spearman’s correlation (Table IV). 

The results indicated that pairwise correlation coefficients among all vegetation indices (VIs) 
are moderate and similar. Despite the high similarity of correlation coefficients among the tested 
Vegetation Indices, the GNDVI and the CIgreen showed the highest correlation (Table IV).

Based on the variance inflation factor (VIF), we observed that there was multicollinearity between 
the GNDVI and CIgreen indices. Multicollinearity indicates that two or more explanatory variables 
show a strong linear relationship and, therefore, one variable does not add any effect to another. In 
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our analysis using remote sensing variables, it may occur because two indices are retrieved from the 
same spectral bands.

Tests based on stepwise regression were applied to choose the best indices for estimating AGB 
in Cerrado vegetation, considering the lowest possible p-value. In this analysis, the GNDVI and NDRE 
indices were retained for modeling. 

Modelling: training of neural networks
The five networks showing the best initial performance among the 500 ANNs trained in this analysis 
showed satisfactory fit and precision statistics for modeling AGB in cerrado sensu stricto vegetation. 
The Networks 2, 3, and 4 showed the best results, with correlation coefficient (R) values higher than 
0,84 and estimation errors below 18%. However, the Neural Network 2 showed the best predictive 
ability (Table V).

The Network 2 (ANN 2) was selected out of five networks showing the highest performances in 
this analysis. The ANN 2 was chosen because it showed an acceptable pattern of residual distribution 
and high accuracy in predicting the AGB in the study area. The error class histogram showed a higher 

Table III. Dendrometric variables estimated from a forest inventory conducted in the Cerrado vegetation in the 
study area.

DB Ht G AGB

Minimum 7,72 2,26 2,63 5,12

Maximum 22,64 8,87 19,95 39,46

Mean 11,57 3,52 10,32 16,55

Variance 9,70 1,79 12,85 73,76

SD 3,11 1,34 3,58 8,59

CV% 26,91 37,94 34,75 51,89
Legend: DB = diameter at breast height (cm), Ht = total height (m), G = basal area (m².ha-1), AGB = above ground biomass (Mg.ha-1).

Table IV. Spearman correlation matrix between the dependent and independent variables.

AGB G NDVI NDRE GNDVI CIred edge CIgreen

AGB 1

G 0,76** 1

NDVI 0,71** 0,56** 1

NDRE 0,67** 0,53** 0,97** 1

GNDVI 0,77** 0,58** 0,82** 0,76** 1

CIred edge 0,67** 0,52** 0,97** 1,00** 0,76** 1

CIgreen 0,77** 0,57** 0,82** 0,75** 1,00** 0,76** 1
**Significant at 99% probability (α =0.01). Where AGB = Aboveground Biomass (Mg.ha-1). G = Basal Area (m²); NDVI = Normalized 
Difference Vegetation Index; NDRE = Normalized Difference Vegetation Index with red edge band; GNDVI = Normalized Difference 
Vegetation Index with green band; CIgreen= Chlorophyll Index with green band; CIred edge = Chlorophyll Index with red edge 
band.
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concentration of residuals in the central classes of the graph and low levels of underestimation and 
overestimation (Figure 6).

The best network architecture was composed by three layers, described as following: input layer, 
consisting of two neurons, determined by the predictor variables (GNDVI and NDRE); a hidden layer, 
which is responsible for processing the data and it is activated by a tangent function, and an output 
layer, consisting of the variable of interest (AGB) and activated by a tangent function (Figure 7). The 
hidden layer consisted of eight neurons determined by the Intelligent Problem Solver (IPS) tool 
(MIGUEL et al. 2018).

Table V. Characteristics and accuracy statistics of the Artificial Neural Networks selected for predicting the 
Aboveground Biomass in Cerrado sensu stricto vegetation.

ANN Architecture
Activation Function Adjustment Validation

Hidden Activation Output Activation RMSE (%) R RMSE (%) R

1 MLP 2-9-1 Logistic Tangent 18,85 0,839 18,07 0,884

2 MLP 2-8-1 Tangent Tangent 16,52 0,908 13,36 0,914

3 MLP 2-8-1 Logistic Logistic 18,15 0,856 13,76 0,916

4 MLP 2-6-1 Logistic Identity 17,49 0,844 15,02 0,902

5 MLP 2-9-1 Tangent Logistic 19,05 0,82 20,38 0,861
Legend: ANN = Artificial Neural Networks; MLP = Multilayer perceptron; RMSE = Root Mean-Square Error; r = correlation between 
observed and estimated values. Bold text indicates the best ANN that showed an acceptable residual pattern and higher 
accuracy.

Figure 6. Observed 
and predicted 
values (a), 
distribution of 
residuals (b), and 
distribution of 
error classes (c).
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Statistical analysis 
Based on the results of the Student’s t-test, we observed that the selected ANNs showed a p-value 
greater than α = 0,05 (p = 0,893), which indicates that there were no statically significant differences 
between the values predicted by the ANN and the values observed in the validation sample plots 
measured in the forest inventory. The aggregate difference showed a slight overestimation bias of 
the ANN for biomass prediction (AD% = -0,65), which corroborates the accuracy results observed for 
training the ANNs.

Based on our selected ANN model, we extrapolated it to predict the AGB for the entire study 
area covered by native vegetation. We observed that those areas showing highest amount of AGB 
predominantly occurred within protected areas in the study area, such as National Park and Ecological 
Stations. Complementarily, small vegetation patches tend to show lower amount of AGB than those 
larger patches (Figure 8).

Complementarily, we examined the Autocorrelation Function (ACF) plot of the residuals, we 
checked for significant autocorrelation at any lag residuals. Relevant autocorrelations in the residuals 
may indicate that the model fails to fully capture the data structure, suggesting the need for a more 
sophisticated model or the inclusion of additional explanatory variables. Conversely, the absence of 
significant autocorrelation in the residuals indicates that the model is well-developed and adjusted. 
In our study, we observed an autocorrelation of -0.13, indicating no significant spatial autocorrelation 
at the 95% confidence level (Figure 9).

Figure 7. Architecture of 
the ANN (Artificial Neural 
Network) selected for 
aboveground biomass 
prediction in the DF 
Cerrado.
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DISCUSSION
Forest Inventory
The mean aboveground biomass (AGB) estimated in this study (16.55 ± 8.5 Mg.ha-1) for cerrado 
vegetation areas closely aligns with the average AGB of 22.9 Mg ha-1 reported by Roitman et al. (2018) 
for the Cerrado biome. Our findings are also consistent with results observed by (BISPO et al. 2020) 
in the Rio Vermelho watershed, state of Goiás, and by (COSTA et al. 2021) in protected areas within 
the Cerrado biome, including Serra do Cipó National Park, Chapada dos Veadeiros National Park, 
Paraopeba National Forest, and Forest of the University of São João Del-Rei. Bispo et al. (2020) and 
Costa et al. (2021) estimated AGB mean distributions of 18.66 Mg ha-1 and 19.72 Mg.ha-1, respectively, in 
their study areas.

Morandi et al. (2020) estimated an average AGB of 20,4 ± 6,0 Mg ha-1-for the central area of the 
Cerrado biome using data from field plots allocated within protected areas and legal reserves in 
private properties. Vale & Felfili (2005) estimated an average AGB equal to 12,4 Mg.ha-1 in cerrado areas 
in the Água Limpa farm in the Federal District of Brazil. Oliveira et al. (2019) estimated an average 10,9 
Mg.ha-1 in a Cerrado area in the municipality of Jaborandi, western Bahia. Based on it, we observed 
that the estimates of AGB in the Cerrado biome may vary according to the specific characteristics of 
the study sites, which indicates structural heterogeneity of the Cerrado vegetation. 

Spatial variations of ABG occur mainly as a function of physical differences in the environment, 
such as luminosity, relief, and soil conditions (Fitzgerald et al. 2010, Oliveira et al. 2019), or disturbance 
regime, such as fires and deforestation (Roitman et al. 2018). Physiographic heterogeneity is reflected 

Figure 8. Predicted Above Ground Biomass (AGB) for Cerrado vegetation in the Federal District, Brazil, using a 
modeling approach based on the Artificial Neural Network and remotely sensed data combined.
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by the size of individual trees and, consequently, the carbon storage capacity, since tree trunks show 
the highest aboveground biomass storage capacity (Roquette 2018, Vale & Felfili 2005). 

Field measurements in native vegetations are difficult, time and money consuming because of 
the heterogeneous and great floristic, physiognomic and phenological diversity, which make their 
biomass quantification a complex task with a little availability of quantitative data (Ferraz et al. 2014). 
Those data gaps can be improved by conducting regular monitoring of the Cerrado using remotely 
sensed data as an alternative approach for estimating biomass (Roitman et al. 2018). 

Modeling: selection of the independent variables
The GNDVI and CIgreen were identified as the vegetation indices with the strongest correlation with 
biomass in the study area. The GNDVI is similar to NDVI, however, it is retrieved from remotely sensed 
data using the green and near infrared spectral bands and is directly related to the proportion of 
absorbed photosynthetically active radiation, leaf area index (LAI) and biomass (Candiago et al. 2015). 
On the other hand, the CIgreen, developed by Gitelson et al. (2005), enhances the canopy chlorophyll 
content and the leaf area index. 

However, we observed multicollinearity between GNDVI and CIgreen, suggesting that one index 
does not substantially contribute additional information beyond the other. This is likely because they 
are retrieved from the same spectral bands. This observation may explain why the best ANN model to 
predict biomass in our study area used the GNDVI and NDRE indices as input layers. These indices are 
retrieved from different spectral bands, green and red edge, respectively, enabling them to capture a 
wider range of vegetation effects in the prediction model.

Figure 9. Autocorrelation of AGB (Aboveground Biomass) residuals as a function of NDRE (Normalized Difference 
Red-Edge index) and GNDVI (Green Normalized Difference Vegetation Index) from the selected ANN (Artificial 
Neural Network) model.
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In this analysis, we observed a medium correlation among vegetation indices and biomass, 
which also indicates a moderate model performance to predict AGB, similar to that observed in 
several researches involving relationships of vegetation indices and variables derived from field 
measurements, such as biomass, wood volume and trunk circumference (Machado et al. 2017, Miguel 
et al. 2015, Panda et al. 2010, Zhu & Liu 2015).  It is likely that it occurs due to potential atmospheric and 
soil effects, radiation sources, and inherent aspects of the vegetation architecture on the reflectance 
of solar radiation detected by the sensors (Carrijo et al. 2020, Gonçalves et al. 2021, Miguel et al. 2015, 
Ponzoni et al. 2012). 

Canopy growth and conformation are irregular and variable in native forests and savannas, 
resulting in interference of those large tree canopies on the solar reflectance of smaller trees and, 
consequently, on relationship of field and remotely sensed data-retrieved variables (Machado et al. 
2017). Canopy structure, canopy leaf area, and canopy background reflectance are conditioning factors 
of vegetation reflectance changes in remote sensing images, which will vary according to specific 
characteristics of each phytophysionomy in each region of interest. In addition to the heterogeneity 
of individual trees, altitude and relief may affect the relationship of field and remote sensing data. 
Some studies have shown low correlations between dendrometric variables and vegetation indices 
in sites of high spatial variations of edaphic attributes (Canavesi et al. 2010, Castillo et al. 2017).

The significant and positive relationships observed between VIs and biomass can be explained 
by the positive relationship of VIs and radial stem growth and leaf area (Almeida et al. 2015, Babst et 
al. 2014a, b, Vicente-Serrano et al. 2016).  These parameters have a direct relationship with biomass 
accumulation, carbon sequestration, and, consequently, wood carbon content (Vicente-Serrano et 
al. 2016). Although vegetation indices cannot directly estimate biomass (Herold et al. 2019), it can be 
directly related to the amount of photosynthetic material and forest productivity (Mendes et al. 2019).

Modeling: training of neural networks
In our analysis, the training of the artificial neural networks was able to accurately predict the AGB in 
the Cerrado using the GNDVI index as an addition to the NDRE index effects in the model prediction. 
Both indices are mathematically derived from NDVI, which has been a robust and widely used 
vegetation index (Bayma & Sano 2015, Zhu & Liu 2015). The GNDVI is retrieved from the green and 
near infrared bands, which improves visualization of canopy sanities and the amount of chlorophyll 
content in the leaves (Gitelson & Merzlyak 1996). The NDRE is retrieved from the red edge band 
(where solar radiation is strongly affected by chlorophyll pigments) and near infrared band (where 
solar radiation is mostly affected by the leaf structure) (Kanke et al. 2016).

The accuracy of forest biomass estimates can be assessed by calculating the root mean square 
error (RMSE) and Pearson’s correlation coefficient of estimated and observed values. This method 
is directly responsible for the quality of the estimates (Congalton 2001).  In our analysis, the trained 
ANNs provided satisfactory fit and accuracy statistics, showing correlation coefficients of R ≥ 0.90 and 
estimation errors (RMSE) between 13 and 20%, in which the network 2 showed the best results (R=0.91 
and RMSE=13.36). It indicates that we have reached consistent results given the complexity of the 
study variables and the vegetational variability observed in the Cerrado biome (Rezende et al. 2006).

The heterogeneity of vegetation structures affects prediction accuracy of AGB when using 
methodological approaches based on remotely sensed data. It occurs because remote sensing 
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images are not sensitive to certain vegetation changes. In addition, the saturation of spectral signals 
captured by optical sensors, the contribution of understory vegetation, soil and shade effects may 
cause biomass modeling errors (underestimate and overestimate) (Kumar et al. 2016, Lu et al. 2017).  

The predictive power of our AGB model is demonstrated by the ratio between observed and 
predicted values (Figure 6), which indicates a good accuracy of the chosen neural network to 
estimate the aboveground biomass in the Cerrado biome. Complementarily, the graphical analysis 
of residuals is crucial to assess the precision statistics since trend errors may not be detected 
by the previously mentioned statistics. In our case study, the scatter plot of residuals showed an 
adequate error distribution showing no apparent trends and compact and well-distributed points 
along the regression line. The frequency of errors indicates that most of the values were concentrated 
between –10% and 7% for training nets. The analysis of residuals in the histograms can minimize error 
interpretation based on the occurrence of overlapping points (Campos & Leite 2013). 

Our study results demonstrates the efficiency of neural networks in predicting AGB and 
corroborates with other studies found in the literature, such as (Silva et al. 2019), who observed 
RMSE ranging between 12% and 17% in estimating volume and AGB in a study site in Montes Claros 
municipality, state of Minas Gerais. Similarly, Vahedi (2016) estimated RMSE ranging between 8% 
and 15% in predicting AGB in Iran. Miguel et al. (2015) pointed a standard error of estimate of 8% for 
biomass estimation in a Cerrado area in Palmas municipality, state of Tocantins.

In this study, we observed similar results to those reported in the literature conducted in other 
regions of the Cerrado biome, indicating that the artificial intelligence (AI) approach applied in this 
analysis can be used to estimate biomass in the Brazilian Cerrado. The high accuracy observed in 
our study can be attributed to the ability of AI approaches to capture the nonlinearity observed 
in the data, as they can approximate complex functions (Silva et al. 2019), which is an important 
characteristic for modeling forest parameters, since they often show non-linear behavior (Vieira et 
al. 2018).

Statistical Analysis
The ANN showing the best results was submitted to Student’s t-teste for validation. The t-test results 
returned a p-value > 0.05 indicating that the null hypothesis of equality between the observed and 
predicted values must not be rejected, which demonstrates the high estimation accuracy of the 
model. According to Serpen & Gao (2014), the ANNs have a great capacity to learn and extract patterns 
from a data set and then generalize and apply them without losing accuracy. The effectiveness and 
accuracy of the selected ANNs was also confirmed by the aggregate difference (AD%), which showed 
a small percentage value (-0.65%) of overestimation in the estimate of AGB in the cerrado vegetation 
of the Federal District.

Our developed ANN modeling approach was effective and accurate to predict AGB using 
vegetation indices retrieved from remotely sensed data. Our approach is an important contribution 
and has great potential to be applied for predicting forest biomass in the Cerrado biome, which 
can support assessment of ecoservices and definition of environmental policies to mitigate global 
climate changes. 
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Spatial distribution of the Aboveground Biomass 
We observed that small patches of native vegetation closer to urban areas showed lower amount of 
AGB, ranging between 6 and 13Mg.ha-1. Our results indicates that protected areas in the Federal District 
were able to provide an important ecosystem service to climate regulation by storing Carbon on the 
ABG. The Ecological Station of Água Emendadas (ESAE) presented the highest mean value of AGB, 
showing 26.94 ± 8.41 Mg.ha-1. Jacon et al. (2021) found a similar average of biomass in Cerrado areas 
(34.5 ± 2.7 Mg.ha-1) using different hyperspectral metrics and machine learning models. The highest 
average of biomass in the ESAE can be explained by the presence of dense Cerrado vegetation and 
more than 50% vegetation cover. 

In addition to the inherent heterogeneity of vegetation, a possible cause of the lower AGB 
values in those small patches is related to higher habitat fragmentation. The discontinuity of native 
vegetation cover into isolated fragments results in population separation, reduced habitat quality, 
and increased edge area. The increase in the proportion of edge related to the area that makes 
the vegetation fragments more susceptible to anthropic disturbances, such as fire, hunting, exotic 
species, logging and invasive species (Coelho et al. 2020, Gamarra et al. 2021)

CONCLUSIONS
Our modeling approach for predicting AGB biomass in Cerrado vegetation based on ANN and 
vegetation indices retrieved from RapidEye imagery showed high accuracy and effectiveness, with a 
predictive power of 90% and RMSE less than 17%. It is a promising methodological approach to be 
broadly applied in the Cerrado biome. The Green Normalized Difference Index using the green and 
near infrared bands (GNDVI) and the Normalized Difference Red-Edge Index using the red edge and 
near infrared bands (NDRE) were able to provide the best model fits for predicting the AGB in our 
study area. 

Complementarily, the Multilayer Perceptron artificial neural networks, using tangential activation 
functions and the BFGS training algorithm, were accurate and efficient in associating vegetation 
indices in the estimation of AGB in the Cerrado vegetation. 

Most of knowledge gaps related to biomass estimation in the Cerrado biome are due to the 
difficulty and cost of field measurements conducted by forest inventories. Therefore, our study 
results are useful for civil society and can improve definition of strategic plans of conservation of 
native vegetation in large extents biomes like the Brazilian Cerrado. 

Our analysis was primarily focused on constructing and evaluating artificial neural network 
(ANN) models to predict aboveground biomass in the shrublands of the Cerrado biome. However, 
we acknowledge the significant potential of alternative approaches involving machine learning 
algorithms, such as Random Forest and Support Vector Machine, in combination with hyperspectral 
remotely sensed data, Synthetic-Aperture Radar (SAR), and/or LiDAR (Light Detection and Ranging) 
sensors. These alternatives should be further investigated in future research within this field.
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