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ABSTRACT

We study the perceptual problem related to image quantization from an optimization point of

view, using different metrics on the color space. A consequence of the results presented is that

quantization using histogram equalization provides optimal perceptual results. This fact is well

known and widely used but, to our knowledge, a proof has never appeared on the literature of

image processing.
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1 INTRODUCTION

To represent an image by digital means it is necessary to substitute its continuous range of colors

by a finite subset of them. This process is called quantization. If the functionf : U → C

represents an image with color range inC, the quantization process consists of the choice of a

functionq : C → Q = {q1, . . . , qn}, defined on the color spaceC and taking values in a finite

subsetQ ⊂ C. The functionq is called aquantizer for f , whileQ is thereproducing alphabet.

The colorsq1, . . . , qn are calledquantization levels. The subsetQ, with known size, can be given

a priori or may be part of the quantization problem.

The image quantization problem appears very early and at different stages of image processing.

It first appears at the acquisition level and it is a basic process at the coding level. Quantization

always implies a perceptual loss of quality of the image, and most of the well known quantization
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techniques exploit some biological limitations of the human visual system, e.g., spatial acuity,

nevertheless they hardly touch some psychophysics aspects of that (Lloyd 1957, Heckbert 1982,

Linde et al. 1980). In this work, we use known psychophysics results on the human visual

system (Fechner 1858, Stevens 1961, von Helmholtz 1891) to study quantization algorithms that

are adapted to the way humans perceive colors. The resulting algorithms will depend on the choice

of a distortion measure for the color space. Different choices will lead to different strategies for

color quantization. We have designed distortion measures based on the so called psychophysics

response function for the visual system and some of them were implemented for comparison.

Also, as a consequence of the results presented, we derive the well known result that quantization

by histogram equalization has, from the viewpoint of the information theory, optimal perceptual

qualities for the resulting quantized image.

2 BACKGROUND

The problem of image quantization can be easily posed as optimization problem, once we define a

metric on the color space and correlate the quantization error to the distribution of colors present

in the image. We then look for a quantizer that minimizes the expect error introduced during the

process. Before we proceed to then-dimensional problem, we will present the scalar case, which

was introduced by Lloyd (1957).

2.1Optimal Scalar Quantization

When an imagef : U → C is quantized an error is introduced between a colorx ∈ C and

its corresponding quantized valueq(x). This punctual error can be measured by the choice of

distortion measure in the color spaceC of the image, see subsection 2.3. Denote this measure by

d, the expect value ford(x, q(x))

E(d, q) =
∫
d(x, q(x))p(x) dx (1)

will provide an measure of the overall impact of the error introduced by the quantization process,

wherep(x) is the probability density function (pdf) for the colors in the image.

The quantizerq is calledoptimal, whenE(d, q) is minimum. A common choice isd(x1, x2) =
|x1 − x2|2, which enables an elegant solution for the case of grayscale images (Lloyd 1957): if

xk andxk+1 are the extremes of the quantization cell, then one can obtain, by simple computing

derivatives, that the quantization intervals boundaries are given by

xk = qk + qk+1

2
(2)

and the quantization levels are computed from the expression

qk =
∫ xk
xk−1

xp(x) dx∫ xk
xk−1

p(x) dx
. (3)
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The solution presented above was simplified by two fairly strong hypothesis: the assumption

that the colors present in the image have a probability distribution function, and the particular

choice for the distortion measured.

Nevertheless, both hypothesis are not common in practice. Most natural images present

large areas with constant colors, which annihilates the hypothesis of the existence of a probability

density function. Besides that, the choice ford had no direct relation with the ultimate end of the

quantization process, that is, the image will be sought by a human being. Thus, general methods

that allow for direct experimentation with humans and that could avoid the use of derivatives are

desired. In the following, we present a general class of such methods as well a description of the

quantization cells for color images.

2.2Weber’s Law

A fundamental aspect of the human visual system is that it does not perceive light intensity con-

tinually but in steps. If�xk = xk+1 − xk is the lower quantity such that is possible to perceive

difference between gray light intensitiesxk andxk+1, theWeber’s law (Weber 1834, Fechner 1858)

states that

�xk

xk
= ε, ε constant. (4)

In consequence, if we start with an intensity valuex0, thek-th value will bexk = x0(1 + ε)k =
x0e

k log(1+ε), which shows that the human visual system uses a non-uniform quantization of the

color space.

Intuitevely, the Weber’s law states that the intensities valuesxk andxk+1 differs from each other

by k units. Therefore, one can model the psychophysics response function byφ(x) = c log(x).

The constant valuec incorporates a possibly change in the basis of the logarithm.

The psychophysics response function can be derived from the axioms of information theory

(Resnikoff 1987). In this context, the only possibilities forφ are:

φ(x) = c log(x) (5)

or

φ(x) = cxr, r �= 0. (6)

The modelφ(x) = c log(x) was proposed by Fechner (1858), while the modelφ(x) = cxr was

proposed by Stevens (1961).

2.3Distortion Measures

From a general viewpoint, we can use as a distortion measure on a color spaceC any function

d : C × C → R, which satisfies
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1) d(x, y) > 0 if x �= y andd(x, x) = 0;

2) d(x, y) = d(y, x).

When, in addition, we have

3) d(x, z) ≤ d(x, y)+ d(y, z),

the measured is called a metric.

Property 3) is handy since it permits to estimate the overall error in a multi step quantization

process from the errors introduced at each step.

Another way to interpret the Weber’s law is to think that the unity used to measure distances

in the color space changes according with the color, this change being proportional to the inverse

of the color intensity. The mathematical concept that abstracts this notion of adaptive change of

unity for each point in a surface is theRiemannian metric.

In the context of Riemannian metrics, the Weber’s law for color intensities suggests the metric

α2( dx
x
)2 for the one-dimensional color space. For the three-dimensional color space, this metric

generalizes to

α2(
dx

x
)2 + β2(

dy

y
)2 + γ 2(

dz

z
)2, (7)

which is known asmetric of von Helmholtz (1891). In such a metric, the distance between the

colorsx = (x1, x2, x3) andy = (y1, y2, y3) is

d2(x, y) = α2 log2(y1/x1)+ β2 log2(y2/x2)+ γ 2 log2(y3/x3). (8)

In consequence, if two color differ only by intensity, i.e.,y = r x, one have

d(x, y) =
√
α2 + β2 + γ 2| log(r)|, (9)

which is the psychophysics response function proposed by Fechner.

Let’s say that the psychophysics function isφ. We can easily construct distortion measures

that takeφ in account. One such choice is

d(x, y) = |φ(x)− φ(y)|r , r �= 0. (10)

Observe that the particular choiceφ = (φ1, φ2, φ3), whereφi(x) = αi log(xi) andr = 2 is

equivalent to the choice of the von Helmholtz’s metric for the three-dimensional color space.

2.4Voronoi Diagram

Given a set of points{x1, . . . , xn} ⊂ C, the subsets

Cj = {x ∈ C | d(x, xj ) ≤ d(x, xk), for k = 1, . . . , n} (11)

form together a partition ofC calledVoronoi diagram, which has an ubiquitous presence in the com-

putational geometry literature due to its good computational properties and many applications. In

particular, the are many known efficient algorithms to compute the Voronoi diagram (de Figueiredo

and Carvalho 1991, Fortune 1987). As we will see, it also plays a role in the quantization problem.
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3 OPTIMAL QUANTIZATION

In the following we will consider the problem of optimal quantization for a measurable function

f : U → C, U ⊂ R
2. For this, transport the measure ofU to C. That is, for a subsetC1 of C,

defineµ(C1) = µ0(f
−1(C1)), whereµ0 is the standard Lebesgue measure forU , see (Fernandez

1976) for details on measure theory. For simplicity, we will supposeµ0(U) = 1, which means that

µ will be a measure of probability forC.

The quantization problem, thus, consists of given a distortion measured, find a quantizer

q : C → Q = {q1, . . . , qn} that minimizes the expected error

E(d, q) =
∫
C

d(x, q(x)) dµ. (12)

It should be remarked that the computation of the quantization levelsqj , j = 1, . . . , n, is part of

the problem.

For each quantization levelqj we define the correspondingquantization cell Cj by Cj =
q−1(qj ), whereq is the quantization function. In other words,Cj is the set of all colors inC which

are quantized to the levelqj .

The problem of computing the quantization levelsqj , j = 1, . . . , n and the corresponding

quantization cellsCj are closely related. If we have the quantization levels inQ, we can compute

the quantization cells. In fact, letCi be the cells in the Voronoi diagram forQ, we have

E(d, q) =
∫
C

d(x, q(x)) dµ =
∑ ∫

Cj

d(x, q(x)) dµ ≥
∑ ∫

Cj

d(x, qj ) dµ.

Therefore, the Voronoi diagram is the best partition for this choice of the quantization levels.

Reciprocally, suppose that we have the quantization cellsCj . Thus the best value forqj is certainly

qj = arg min
c∈C, x∈Cj

E(d(x, c)) = arg min
c∈C

∫
Cj

d(x, c) dµ. (13)

From the above properties of the quantization levels and quantization cells, one can design

a descendent algorithm to compute the optimal quantizer. The basics for such an algorithm is

presented below as Algorithm 1. We note that at each step of the algorithm, the value forE(d, q)

decreases. It is possible to show that this algorithm belongs to a class of convergent algorithms,

under certain conditions, see (Gray et al. 1979).

Algorithm 1
1: Start with an arbitrary reproducing alphabetQ = {q1, . . . , qn}
2: repeat

3: Compute the Voronoi diagramC1, . . . , Cn for Q

4: Compute the reproducing alphabetQ = {q1, . . . , qn} according to equation 13

5: until Stop criteria
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The followings propositions will be useful for the construction of Table I to be used for

implementation purpose.

Proposition 1. Let q : C → Q = {q1, . . . , qn} be an optimal quantizer for an image f : U → C

and B the common border of the quantization cells Ci and Cj . Then

1) B is halfway between qi and qj , that is, if x ∈ B, then d(x, qi) = d(x, qj ).

2) In particular for scalar quantization, if d(x, y) = |φ(x) − φ(y)|r and φ is one-to-one, we

have

φ(x) = φ(qi)+ φ(qj )

2
. (14)

Proof. 1) SinceCk are cells of the Voronoi diagram forQ, we have thatx ∈ Ck if and only if

d(x, qk) ≤ d(x, qs) for any s = 1, . . . , n. Therefore, ifx ∈ B, thend(x, qi) ≤ d(x, qj ) and

d(x, qj ) ≤ d(x, qi), which shows thatd(x, qi) = d(x, qj ).

2) We may suppose, without loss of generality, thatqi �= qj , otherwise, we join the cellsCi
andCj in a single one. Thus, ford(x, y) = |φ(x)− φ(y)|r , it follows that

φ(x)− φ(qi) = φ(qj )− φ(x)

or

φ(x)− φ(qi) = φ(x)− φ(qj )

but the second equation impliesφ(qi) = φ(qj ). From the injectivity ofφ, we haveqi = qj , which

has been excluded. �

Proposition 2. Let q : C → {q1, . . . , qn} be an optimal quantizer for an image f : U → C.

Denote the quantization cells by Ck , then:

1) If d(x, y) = |φ(x)− φ(y)|2, φ(qk) is the mean of φ(x) over Ck, that is

φ(qk) =
∫
Ck
φ(x) dµ∫
Ck
dµ

. (15)

2) If d(x, y) = |φ(x)− φ(y)|, then φ(qk) is the median of φ(x) over Ck.

Proof. To proof the proposition, just observe that (James 1981)

mean= arg min
c

E(X − c)2

and

median= arg min
c

E|X − c|.
�
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TABLE I

Recurrence formulas for scalar quantization.

d(x, y) xk qk

|x − y| qk+qk+1
2 median{zj | xk−1 < zj ≤ xk}

|x − y|2 qk+qk+1
2

1
nk

∑
pjzj , xk−1 < zj ≤ xk

| log(x)− log(y)| √
qkqk+1 median{zj | xk−1 < zj ≤ xk}

| log(x)− log(y)|2 √
qkqk+1 (

∏
z
pj
j )

1/nk , xk−1 < zj ≤ xk

For the particular case of scalar quantization,φ maps the median ofx on the median of

φ(x). Therefore, Proposition 2 presents a noticeable fact: If the distortion measure is given by

d(x, y) = |φ(x) − φ(y)|, the quantization level is the median of the quantization interval and

therefore does not depend on the functionφ.

Table I presents the discrete formulas. They will be used for the implementation to be discussed

in Section 4. In this table,zj denotes the color in the image range,pj the total number of the

occurrences of the colorzj in the cellCk andnk the number of the color occurrences in the cellCk.

3.1Quantization and Information Gain

In this section, we will show that color quantization by histogram equalization provides optimal

results in the sense that it maximizes the information retained by the quantization process. In the

literature of computer graphics this quantization technique was introduced by P. Heckbert (1982)

and is known as themedian cut algorithm. Also, it is well known in the area of image processing

that a simple histogram equalization improves the perceptual properties of an image. Although

the good perceptual qualities of histogram equalization are well known and widely used, to our

knowledge, a proof has never appeared on the literature.

Quantization by histogram equalization consists in choosing the quantization cells in such

way that each of then contains the same number of colors. This is equivalent to a constant color

histogram in the quantized image. For scalar quantization, this means that we should choose the

borders of the quantization cells asxk = F−1(k/n), whereF(x) = ∫ x
−∞ dµ is the accumulated

probability distribution of the colors in the image.

Given a measureµ onC and two measurable subsetsC2 ⊂ C1 ofC, the information gain from

C2 with respect toC1 is defined by (Resnikoff 1987)

G = log
(µ(C1)

µ(C2)

)
. (16)

In particular, whenµ is a probability measure, the information gain of a subsetC1 related to

the setC is

G = log
( 1

µ(C1)

)
= − log(µ(C1)). (17)
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From now on, we will be concerned only with probabilities measures. LetP = {C1, . . . , Cn}
be a partition ofC by measurable subsets, that is,C = ∪kCk andµ(Ci ∩Cj) = 0, if i �= j . Denote

by pk = µ(Ck), sinceµ(C) = 1, we have
∑n

k=1pk = 1. Thereforepk is discrete probability and

theexpected gain of information or entropy related to this subdivision ofC is defined by

I = I (P) = −
n∑
k=1

pk log(pk). (18)

Intuitively, I is a measure of the information present in a given quantization of an image, with

cellsCk. Let’s refine the partitionP by introducing a new cell, that is, we splitCk = Ck1∪Ck2 with

µ(Ck1 ∩Ck2) = 0. Let’s call this new partitionP ′ and writepk = pk1 +pk2, wherepki = µ(Cki).

We have

−pk log(pk) = −(pk1 + pk2) log(pk1 + pk2) ≤ −pk1 log(pk1)− pk2 log(pk2)

from where,

I (P) ≤ I (P ′).

The above equation corresponds to the intuitive notion that the perceptual quality of a quantized

image improves if we use more quantization cells. On the other side, each term of the sum in

I is a function of the typeg(x) = −x log(x), x > 0 and therefore it satisfies limx→0 g(x) =
limx→1 g(x) = 0. This in turn implies that cells with very high or very small probability will

produce a negligible contribution for the information gain. The former possess little information,

while the latter have small probability. Therefore, a natural question arises: what are the best

partitions forC in order to maximize the information gain?

Proposition 3. Let f : U → C be an image and P = {C1, . . . , Cn} a partition of C. Then the

information gain is maximum for pk = µ(Ck) = 1/n.

Proof. We want to maximizeI = − ∑
pk log(pk) subject to the restriction

∑
pk = 1. Therefore,

we can apply the Lagrange method searching for the singular points ofI . LetL be defined by

L = −
∑

pk log(pk)+ λ
∑

pk.

Differentiating , we find

0 = ∂L

∂pk
= − log(pk)− 1 + λ.

Thereforepk = eλ−1 and using the restriction, we havepk = 1/n.

SinceI is a concave function, its restriction to the subspace{(p1, . . . , pn) | ∑
pk = 1} is also

concave, therefore the only critical point is actually the place whereI reaches its global

maximum. �
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4 IMPLEMENTATION

From the formulas in Table I, we see that the expressions forxk andqk are defined in a recursive way.

Once we know the values forx1, . . . , xn, we can compute the values forq1, . . . , qn and vice-verse.

This suggests Algorithm 2.

Algorithm 2
1: Start with any values forq1, . . . , qn

2: repeat

3: Computex0, . . . , xn+1 according to Table I

4: Computeq1, . . . , qn according to Table I

5: until Stop criteria

The stop criteria can be the number of iterations or one can halt the algorithm whenE(d, q)

stops decreasing, in this case some kind of threshold has to be used. The algorithm was implemented

by Romildo Silva according to Table I and applied to the well known image of Lena. Originally

with 256 colors, the image was quantized to 16, 8, 4 and 2 colors for comparison between different

possibilities ford. The algorithm of the median cut was also implemented for comparison. The

results are presented in Figures 1 to 5 at the end of the paper.
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RESUMO

O problema perceptual relacionado a imagens quantizadas é estudado do ponto de vista da otimização,

usando diferentes métricas no espaço de cores. Como conseqüência dos resultados apresentados, mostra-se

que quantização por equalização de histograma fornece resultados perceptuais ótimos. Esse resultado é

conhecido e amplamente usado mas, ao que saibamos, sua prova nunca apareceu na literatura de processa-

mento de imagens.

Palavras-chave: Quantização de imagens, quantização de cores, otimização, algoritmo do corte mediano,

teoria da informação.
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Fig. 1 – Lena image quantized to 16, 8, 4 and 2 bits/pixel and distortion measured(x, y) = |x − y|.
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Fig. 2 – Lena image quantized to 16, 8, 4 and 2 bits/pixel and distortion measured(x, y) = |x − y|2.
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Fig. 3 – Lena image quantized to 16, 8, 4 and 2 bits/pixel and distortion measured(x, y) = | log(x)− log(y)|.
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Fig. 4 – Lena image quantized to 16, 8, 4 and 2 bits/pixel and distortion measured(x, y) = | log(x)− log(y)|2.
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Fig. 5 – Lena image quantized to 16, 8, 4 and 2 bits/pixel and using the median cut algorithm.
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