
ABSTRACT: Soil pH and base saturation are important parameters for evaluating the effects of acidity on plant growth. However, the 

relationship between soil pH and base saturation (V%) has been poorly studied in Brazil. The aim of this study was to evaluate the influence 

on the cation exchange capacity (CEC) on this relationship for soils of Mato Grosso do Sul, Brazil, using a database consisting of 30,244 

analyses of soils collected from 0–0.2- and 0.2–0.4-m depths. The CEC at pH 7 of analyzed soils varied from 3.4 to 40.5 cmolc·dm-3 and were 

grouped into four classes (< 6, 6–10, 10–20, and > 20 cmolc·dm-3) for each soil layer. The V% versus pH relationship was CEC dependent 

for both soil layers. For 0–0.2 m, V% was directly related to CEC (< 6, 6–10, 10–20, and > 20 cmolc·dm-3) and reached 50, 55, 60, and 74% 

at pH 5 and 66, 73, 81, and 88% at pH 6, respectively. Predicting V% in relation to pH was also affected by CEC, with a decrease in the 

correlation of p = 0.82 for CEC < 6 cmolc·dm-3 to p = 0.64 for CEC > 20 cmolc·dm-3. The decrease in this correlation was related to low clay  

content (17%) of soils with CEC < 6 cmolc·dm-3, which provided low buffering capacity. For soils with CEC > 20 cmolc·dm-3 and higher  

clay content (45%), greater buffering capacity was observed associated with kaolinite. Findings suggest that CEC should be considered 

to understand the relationship between V% and pH CaCl2.
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INTRODUCTION

Most Brazilian soils exhibit tropical characteristics such as low pH and poor natural fertility. The first step to adapt soil 
conditions for agricultural cultivation is to partially neutralize soil acidity by liming (Ratke et al. 2018, Rheinheimer et al. 
2018). As well as providing calcium (Ca2+) and magnesium (Mg2+), the practice of liming is very effective for neutralizing 
acidity originating from hydrogen (H+) deprotonation of hydroxyls group from mineral and organic matter fractions and 
those hydrolyzed from exchangeable aluminum (Al3+) (Bolan et al. 2023, Vargas et al. 2019). Among calculation methods 
for liming recommendation (LR), the most widely used method (Prado et al. 2020, Predebon et al. 2018) aims to increase 
soil base saturation (V%) (Quaggio et al. 1985) by elevating initial soil base saturation (V1) to levels required for producing 
a certain crop (V2). This method considers the cation exchange capacity at pH 7 (cmolc·dm-3) and the total neutralizing 
relative power of the soil corrective (Quaggio et al. 1985).

There is a high correlation between V% and soil pH (the higher the V%, the higher the soil pH) in this LR method 
(Catani and Gallo 1955, Raij et al. 1968, Castro et al. 1972, Raij 2011, Cornelissen et al. 2018). However, some studies show 
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that the desired V% value is not attainable under some conditions (Araújo et al. 2009), even though high productivity is 
still achieved. For example, Palhano et al. (1984) obtained 70% base saturation for maximum soybean growth in soils of 
Paraná, Brazil, while Sousa et al. (1997) and Vieira et al. (2013) found a V of 50% necessary for the same crop in Cerrado 
and Guarapuava, Paraná, respectively. Depending on the region of Brazil, increasing soil V% can be more difficult, partly 
related to aspects of acidity correction, but mainly due to soil properties such as mineralogy, clay content (texture), amounts 
of organic matter (OM) (Motta and Mello 2009), and other attributes related to cationic soil exchange capacity (CEC).

In poorly weathered soils with predominance of 2:1 clay, most of the charges are permanent and, even at low pH, can 
retain bases and Al3+ (the main buffer of the system) (Motta and Melo 2009). In soils with predominance of 1:1 clay type 
and oxides, there is an abundance of variable charges of hydroxyl groups (R-OH) that undergo deprotonation and retain 
cations as pH increases (Motta and Melo 2009), but the presence of different R-OH groups and different pKa causes this 
dissociation to vary from soil to soil. In general, Fe and Al oxides exhibit predominant behavior as weak acid radicals 
decreasing to 1:1 and then 2:1 phyllosilicate (Costa et al. 2020, Silva et al. 2008, Sposito 2008). With deprotonation of R-OH 
radicals, retention of cations causes change in V% that depends on the mineral. Since CEC varies in this same sequence, a 
relationship between CEC × pH × V % can be expected.

The large quantity of pH-dependent charges in OM promotes a high degree of soil buffering, which needs attaining 
higher pH values to achieve a particular saturation compared to similar soils with less OM (Silva et al. 2008). Acid groups 
from soil colloids present in 1:1 phyllosilicates, oxides, and OM make up pH-dependent CEC and provide negatively charged 
sites capable of retaining bases [potassium (K+), sodium (Na+), Ca+2 and Mg+2] (Aprile and Lorandi 2012). Since soils with 
the same CEC have similar mineralogy, OM content, pH range, and potential acidity, LR based on CEC ranges can make 
the correction more efficient and even reduce costs of these practices since responses to increased pH and the resulting V% 
will depend on these parameters (Aprile and Lorandi 2012, Zgorelec et al. 2019).

For the state of Mato Grosso do Sul, Brazil, our study objective was to investigate the influence of soil CEC on the 
relationship of V% × pH in soils by evaluating linearities; assessing the correlation of V% with Al3+, H + Al, pH CaCl2, OM, 
and clay; and obtaining regressions with the most significant variables for V% within various CEC ranges. We hypothesized 
that, if CEC and appropriate variables were known, the base saturation that would result from liming could be predicted 
using the V% method for a wide variety of Brazilian soils.

MATERIALS AND METHODS

The study was developed using a database of 30,244 soil samples collected at depths of 0–0.2 m (78% of total) and  
20–40 cm (22% of total) in different regions of Midwest Brazil (state of Mato Grosso do Sul). According to Fig. 1, the 
municipalities of Rio Brilhante (63.2%) and Nova Alvorada do Sul (22.7%) had greater representation within the database.

Rio Brilhante and Nova Alvorada do Sul are located in the Southwest region of the state, with the first one being situated in  
the Grande Dourados region and belonging to the Rio Brilhante hydrographic basin, while the second one is located  
in the Campo Grande region. Both municipalities are in the Cerrado biome and do not present sites with protected areas. 
According to the Köppen classification, Rio Brilhante has influences of two tropical climates: savanna (Aw) and humid 
subtropical (Cfa). Winter is dry and cold with the occurrence of frosts, and the summer is hot, humid, and rainy with an 
mean annual rainfall of 1,600 mm (Alvares et al. 2013). Nova Alvorada do Sul is influenced only by the savanna climate 
(Aw), and the only difference was no frost or low temperatures in winter (Alvares et al. 2013).

While soils in the region of Rio Brilhante are predominantly Latosols with a clay texture and variable natural fertility, 
margins of watercourses had Glei Humic and Little Humic Glei soils, which were usually of high fertility. The relief was 
characterized by tabular and flat forms, with gentle slopes, and associated with accumulation areas next to main drainages 
(Sebrae 2015b). In Nova Alvorada do Sul, soils were mostly Alic Dark Red Latosol and Dystrophic Purple Latosol with 
small areas of Alic Planosol, Alic Quartz Sands, and Eutrophic Little Humic Glei. The relief was mottled in dissected forms 
of tabular tops in the western part and presented flat areas that resulted from fluvial accumulation, which were subjected 
to periodic flooding (Sebrae 2015a).
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Figure 1. Location of Mato Grosso do Sul in midwest Brazil and sites in the state where the 30,244 samples were collected (in orange) that 
constituted the study database (23,551 in the 0–0.2-m layer and 6,693 in the 0.2–0.4-m layer).

Soil samples were dried, homogenized, and passed through a 2-mm sieve to obtain fine air-dried earth before chemical 
characterization according to the Manual of Soil Analysis Methods (Embrapa 2017). Soil chemical analyses consisted of 
evaluating pH in CaCl2 (0.01 mol·L-1), soil/CaCl2 ratio (1:2.5); pH SMP; Al3+, Ca2+, and Mg2+ extracted by KCl (1 mol·L-1);  
K+ and phosphorus (P) (extracted by Mehlich 1943); and organic carbon analyzed by the Walkley Black method. The 
determination of Ca2+ and Mg2+ were by atomic absorption spectrometry, Al3+ by titrimetric analysis, K+ by flame photometry, 
and P by colorimetry.

The physical analysis of soil texture consisted of determining sand, silt, and clay fractions by the pipette method (Embrapa 
2017). This analysis was performed on 50% of samples in the database with the highest percentage being in the 0–0.2-m 
soil layer.

Data from the 0–0.2-m layer were subdivided according to CEC (cmolc
•dm-3): 0 to 6 (1,106 samples); 6 to 10  

(8,341 samples); 10 to 20 (13,411 samples); and greater than 20 (693 samples). Subdivisions of 0.2–0.4-m layer samples 
according to CEC (cmolc·dm-3) were: 0 to 6 (1,049 samples); 6 to 10 (3,593 samples); 10 to 20 (1,982 samples); and greater 
than 20 (69 samples). Descriptive data parameters (mean, standard deviation, median, maximum, and minimum) were 
calculated, in addition to analyzing the relationships between pH CaCl2 and V% by linear regression and Spearman’s 
correlation analysis between chemical attributes (p < 0.05).

The equations obtained between V% and pH for each CEC class (< 6, 12, 18 and 24 cmolc·dm-3) and layers (0–0.2 and 
0.2–0.4-m depths) were used to determine values of V% and CEC at fixed values of soil pH (5, 5.5, and 6). Statistical analyses 
were performed using R software, and the graphs were plotted using Excel and OriginLab software.

RESULTS AND DISCUSSION

Descriptive statistics of soils in the 0–0.2 m shown in Table 1 indicate that, regardless of CEC class, pH CaCl2 mean 
values were greater than 5, resulting in Al being hydrolyzed, which reduced mean values close to 0. In a soil survey of a 
Cerrado area under native conditions, Lopes and Cox (1977) found a mean equivalent pH of 4.4 in CaCl2 0.01 M (pH 5 in 
water) and 0.56 cmolc·dm-3 for Al. This difference was expected since liming is almost a mandatory practice in converting 
native regions for agricultural use (Prado et al. 2020).
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Table 1. Descriptive statistics of soil samples collected in the state of Mato Grosso do Sul, Brazil, at a depth of 0–0.2 m subdivided according 
to their CEC pH 7.

CEC
pH CaCl2

V Clay Al3+ H + Al OM

cmolc·dm-3 -------% ------- ------ cmolc·dm-3 ------- g·dm-3

< 6

Mean 5.04 50 17.4 0.11 2.65 18.32

SD 0.51 11 4.1 0.15 0.61 4.15

Median 5.01 51 16.0 0.00 2.58 18.05

Minimum 3.95 18 16.0 0.00 1.32 8.42

Maximum 6.51 75 30.0 0.57 4.44 28.51

6 to 10

Mean 5.10 56 37.6 0.08 3.61 21.32

SD 0.46 12 18.3 0.14 1.01 4.91

Median 5.10 57 35.0 0.00 3.55 20.80

Minimum 3.87 24 6.0 0.00 1.21 7.73

Maximum 6.35 87 81.0 0.55 6.43 35.25

10 to 20

Mean 5.16 64 54.9 0.07 4.59 24.01

SD 0.39 11 12.3 0.12 1.28 4.81

Median 5.14 64 58.0 0.00 4.48 23.69

Minimum 4.20 33 21.0 0.00 1.25 10.07

Maximum 6.29 90 80.0 0.45 8.21 38.14

> 20

Mean 5.43 82 45.1 0.00 4.10 25.44

SD(4) 0.32 5 15.2 0.00 1.02 4.90

Median 5.43 83 45.0 0.00 3.95 25.76

Minimum 4.47 64 16.0 0.00 1.52 12.13

Maximum 6.42 94 72.0 0.00 7.23 38.69

CEC: Cation exchange capacity at pH 7; V: base saturation; OM: organic matter; SD: standard deviation.

Although lime is normally incorporated to ~20 cm or soil surface applied, pH and Al for the 0.2–0.4-m depth (Table 2) 
was similar to 0-0.2-m observations (Table 1) (Prado et al. 2020). However, soil acidity under native conditions is generally 
similar throughout the profile of highly weathered soils (Motta and Melo 2009). This confirms Melinski’s (2020) observations 
suggesting that the influence of liming can expand to deeper soil layers over time. Soils in the 0.2–0.4-m layer also presented 
pH values greater than 5, except for soils with CEC < 6 cmolc·dm-3.

Despite similar soil pH among CEC classes, H + Al rose with increasing class. This could be related to increases in clay 
content and/or OM (Table 1), which drives soil buffering capacity (Motta and Melo 2009).

Soils with CEC smaller than 6 cmolc·dm-3 were sandy soils with low clay concentrations and low OM contents. Sandy 
soils are more susceptible to nutritional imbalance and maintain low base reservoirs and buffering capacity due to low 
CEC (Resende et al. 2016). This imbalance was observed by Volf et al. (2022), who found K application reduced foliar Ca, 
Mg, Fe, and B in soybean. The CEC of sandy soils under tropical conditions are more pH-dependent (Aprile and Lorandi 
2012, Obalum et al. 2013).

CEC class had a large impact on the relationship between pH and V% at the 0–0.2 (Fig. 2) and 0.2–0.4-m depths  
(Fig. 3). For evaluated depths, all adjustments were obtained with quadratic equations. Greater adjustments to quadratic 
models (higher R2) describing V% and pH relationships were observed among CEC classes in the 0–0.2 m soil layer  
(Fig. 2) relative to the 0.2–0.4-m layer (Fig. 3); these observations corroborate Beery and Wilding’s finding (1971) for soils 
in Ohio, United States of America. Quadratic models of pH CaCl2 and V% showed nonlinear characteristics for the 0–0.2-m 
soil layer and exhibited a concave curve shape; this was mainly observed for soils having CEC greater than 10 cmolc·dm-3 
(Figs. 2 and 3).
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Table 2. Descriptive statistics of soil samples collected in the state of Mato Grosso do Sul, Brazil, at a depth of 0.2-0.4 m subdivided according 

to their CEC pH 7.0.

CEC
pH CaCl2

V Al3+ H + Al OM

cmolc·dm-3 % ------ cmolc·dm-3 ------- g·dm-3

< 6

Mean 4.61 38 0.41 3.13 10.19

SD 0.41 10 0.31 0.66 2.87

Median 4.59 38 0.31 3.09 9.79

Minimum 3.61 11 0.00 1.57 2.64

Maximum 5.77 67 1.42 4.99 18.05

6 to 10

Mean 5.23 54 0.02 3.57 12.11

SD 0.18 7 0.07 0.63 3.54

Median 5.18 54 0.00 3.59 11.86

Minimum 5.01 37 0.00 1.88 4.29

Maximum 5.75 72 1.50 5.37 23.14

10 to 20

Mean 5.26 67 0.01 4.17 11.96

SD 0.21 9 0.05 0.89 3.15

Median 5.20 67 0.00 4.16 11.86

Minimum 5.01 44 0.00 2.00 4.29

Maximum 5.84 90 0.51 6.50 19.42

> 20

Mean 5.02 73 0.16 6.83 11.57

SD 0.67 20 0.36 5.25 3.27

Median 5.26 82 0.00 4.21 11.17

Minimum 3.75 20 0.00 2.04 5.66

Maximum 6.29 93 1.61 24.53 19.42

CEC: Cation exchange capacity at pH 7; V: base saturation; OM: organic matter; SD: standard deviation.
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Figure 2. Relationship between soil base saturation (V%) and pH CaCl2 as a function of soil cation exchange capacity at pH 7: (a) between 0 and 6,  

(b) 6 and 10, (c) 10 and 20, and (d) > 20 cmolc·dm-3. Samples from the 0–0.2-m soil layer collected in the state of Mato Grosso do Sul, Brazil.
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Figure 3. Relationship between soil base saturation (V%) and pH CaCl2 as a function of soil cation exchange capacity (CEC) at pH 7:  
(a) between 0 and 6, (b) 6 and 10, (c) 10 and 20, and (d) > 20 cmolc·dm-3. Samples from the 0.2–0.4-m soil layer collected in the state of Mato 
Grosso do Sul, Brazil.

Results confirm variation among different clay type with differing CEC (Mehlich 1943). Silva et al. (2008) found 
relationships between pH and V% to be nonlinear among different soil types and attributed the concave shape of curves 
to kaolinite soils. Similar behavior between pH and V% was observed in soils with CEC greater than 10 cmolc·dm-3 in this 
study (regardless of depth from which soil was collected), particularly when soil pH was greater than 5.

The relationship between V% and CEC under three fixed pH values (5, 5.5, and 6) is shown in Fig. 4. For the 0–0.2-m 
layer at pH 5, V% attained would be ~50, 55, 60, and 74% for the four CEC ranges, respectively (Fig. 4a). At pH 5.5, V% 
would be 58, 64, 71, and 82%, respectively (Fig. 4a), and respective values at pH 6 were 66, 73, 81 and 88% (Fig. 4a); this 
indicates that increases in V% at the same pH is dependent on soil CEC. For the 0.2–0.4-m layer, V% values were very close 
to values found for the 0–0.2-m soil layer using quadratic models (Fig. 4b). Increasing values of V% obtained at pH 5, 5.5, 
and 6 from quadratic models of pH CaCl2 and V% indicate that increases in base saturation (according to pH) is delimited 
by soil CEC (regardless of depth). In other words, the higher the soil CEC, the lower the pH required to achieve a target 
V% (Figs. 4a and 4b). Soil CEC regulates the retention of basic cations and is therefore an indicator of the magnitude of 
parameter V% (Ramos et al. 2018).

V% values for the 0–0.2-m soil layer showed a high negative correlation with the sum of H and Al (H + Al) and a high 
positive correlation with pH CaCl2 (p < 0.01) (Table 3). On the other hand, soils from the 0.2–0.4-m layer showed a lower 
negative correlation with H + Al values, as well as a lower correlation with pH CaCl2 compared to the 0–0.2-m layer, except 
when the CEC > 20 cmolc·dm-3. Other chemical parameters did not significantly correlate with V% at any depth (p > 0.05). 
The high negative correlations of V% with H + Al indicate the relationship of potential acidity in the maintenance of V% in 
acidic soils. A large part of CEC exchange sites in tropical soils is occupied by Al3+ or H+, and these soils have mineralogy 
composed of kaolinite, gibbsites and hematite, and an absence of 2:1 minerals (Pincus et al. 2017). With increased pH, H 
and Al are dissociated from the exchange complex at the same time that available negative charges are capable of retaining 
basic cations (Ca2+, Mg2+, K+), which increases V% (Motta and Melo 2009).
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Figure 4. Base saturation (V%) obtained in soils at pH 5, 5.5, and 6 in the (a) 0–0.2- and (b) 0.2–0.4-m layers based on soil cation exchange 
capacity (CEC) at pH 7 of 6, 12, 18, and 24 cmolc·dm-3 for samples collected in the state of Mato Grosso do Sul, Brazil.

Table 3. Spearman’s correlation coefficients (ρ) between V% and H + Al and V% and pH CaCl2 as a function of CEC values at pH 7 of soil 
samples collected in the state of Mato Grosso do Sul, Brazil, at the depths of 0–0.2 and 0.2–0.4 m*.

Depths (cm)  ------- 0–20 ------- ------- 20–40 -------

CEC cmolc·dm-3 H + Al pH CaCl2 H + Al pH CaCl2

< 6

V%

-0.91 0.82 -0.69 0.56

6 to 10 -0.86 0.84 -0.59 0.39

10 to 20 -0.85 0.81 -0.78 0.63

> 20 -0.89 0.64 -0.92 0.77

*p < 0.01 for all values of ρ; V%: base saturation; CEC: Cation exchange capacity at pH 7.

The high correlations of V% with pH (Table 3) are due to the generation of charges from pH-dependent minerals 
such as found in kaolin soils. At pH above 5, the displacement of H from hydroxyls increases the negative sites in soil 
clay fractions with pH-dependent loads, mainly due to functional groups with strong acidic characteristics such as silanol 
(Si-OH) of kaolinite (Almeida et al. 1999, Obalum et al. 2013). The increase in negative sites allows for greater base 
retention, which increases CEC and V% (Khawmee et al. 2013, Nakao et al. 2017). On the other hand, soils collected 
from the 0–0.2-m layer with CEC greater than 20 cmolc·dm-3 had the lowest correlations between V% and pH CaCl2 
(Table 3). This was possibly due to the homogeneity of pH among samples since pH was above 5 for 89% of these soils. 
As seen in the 0–0.2-m layer, correlations between V% and H + Al, and V% and pH in the 0.2–0.4-m layer were the 
most important variables in explaining variation in base saturation. However, the curve of the relationship between pH 
CaCl2 and V% was slightly convex for soils with CEC up to 6 cmolc·dm-3. Similar observations were reported by Silva 
et al. (2008) for soils rich in iron and aluminum oxides (oxidic), in which concave curves noticed for soils with CEC 
greater than 6 cmolc·dm-3 were attributed to kaolinite soils.

The hydroxylated groups of oxidic soils are the weak acids ferrol (Fe-OH) and aluminol (Al-OH) that do not 
easily release H+ (Kostenko 2015). The high pH of the point of zero charge (PZC) (pHPZC > 7) of Fe-OH and Al-OH 
groups (pH above which H+ ion dissociation occurs) makes adding more negative charges sites difficult and limits 
the CEC of oxidic soils (Arai and Sparks 2007, Cornell and Schwertmann 2003, Gérard 2016). However, kaolinitic 
soils rich in Si-OH groups (pHPZC < 2.5) readily dissociate H+, which provides greater cation retention and therefore 
higher V% (Fontes et al. 2001).
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CONCLUSION

Considering V% a widely used liming recomendation method in Brazil, soil CEC proved to be of great importance 
in assessing the relationship between V% and pH. The relationship between V% and pH was also affected by CEC,  in 
which the higher the soil CEC, the lower the pH required to achieve a target V%. The V% and pH CaCl2 relationship was 
nonlinear, and the curve was slightly concave for soils with CEC values greater than 6 cmolc·dm-3, which is characteristic 
of kaolinitic soils. For soils with CEC up to 6 cmolc·dm-3, the curve of the pH CaCl2 × V% relationship was slightly 
convex, which is characteristic of oxidic soils in which V% is limited under increasing pH due to low amounts of 
negative pH-dependent charges. Thus, soil CEC, texture, and buffering capacity should be evaluated in isolation to better 
understand the relationship between V% and pH CaCl2. With better understanding of this dynamic, liming method can 
be more efficient by not compromising availability of other nutrients or losing bases by leaching.
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